-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
207 lines (172 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Domain Adaptation experiments
import os
import random
import argparse
import copy
import pprint
import distutils
import distutils.util
from omegaconf import OmegaConf
import numpy as np
from tqdm import tqdm
import torch
from adapt.models.models import get_model
from adapt.solvers.solver import get_solver
from datasets.base import UDADataset
import utils
from adapt import *
random.seed(1234)
torch.manual_seed(1234)
np.random.seed(1234)
torch.cuda.manual_seed(1234)
def main():
parser = argparse.ArgumentParser()
# Load existing configuration?
parser.add_argument('--load_from_cfg', type=lambda x:bool(distutils.util.strtobool(x)), default=False, help="Load from config?")
parser.add_argument('--cfg_file', type=str, help="Experiment configuration file", default="config/digits/dann.yml")
# Experiment identifer
parser.add_argument('--id', type=str, help="Experiment identifier")
parser.add_argument('--use_cuda', help="Use GPU?")
# Source and target domain
parser.add_argument('--source', help="Source dataset")
parser.add_argument('--target', help="Target dataset")
parser.add_argument('--img_dir', type=str, default="data/", help="Data directory where images are stored")
parser.add_argument('--LDS_type', type=str, default="natural", help="Label Distribution Shift type")
# CNN parameters
parser.add_argument('--cnn', type=str, help="CNN architecture")
parser.add_argument('--load_source', type=lambda x:bool(distutils.util.strtobool(x)), default=True, help="Load source checkpoint?")
parser.add_argument('--l2_normalize', type=lambda x:bool(distutils.util.strtobool(x)), help="L2 normalize features?")
parser.add_argument('--temperature', type=float, help="CNN softmax temperature")
# Class balancing parameters
parser.add_argument('--class_balance_source', type=lambda x:bool(distutils.util.strtobool(x)), help="Class-balance source?")
parser.add_argument('--pseudo_balance_target', type=lambda x:bool(distutils.util.strtobool(x)), help="Pseudo class-balance target?")
# DA details
parser.add_argument('--da_strat', type=str, help="DA strategy")
parser.add_argument('--load_da', type=lambda x:bool(distutils.util.strtobool(x)), help="Load saved DA checkpoint?")
# Training details
parser.add_argument('--optimizer', type=str, help="Optimizer")
parser.add_argument('--batch_size', type=int, help="Batch size")
parser.add_argument('--lr', type=float, help="Learning rate")
parser.add_argument('--wd', type=float, help="Weight decay")
parser.add_argument('--num_epochs', type=int, help="Number of Epochs")
parser.add_argument('--da_lr', type=float, help="Unsupervised DA Learning rate")
parser.add_argument('--da_num_epochs', type=int, help="DA Number of epochs")
# Loss weights
parser.add_argument('--src_sup_wt', type=float, help="Source supervised XE loss weight")
parser.add_argument('--tgt_sup_wt', type=float, help="Target self-training XE loss weight")
parser.add_argument('--unsup_wt', type=float, help="Target unsupervised loss weight")
parser.add_argument('--cent_wt', type=float, help="Target entropy minimization loss weight")
args_cmd = parser.parse_args()
if args_cmd.load_from_cfg:
args_cfg = dict(OmegaConf.load(args_cmd.cfg_file))
args_cmd = vars(args_cmd)
for k in args_cmd.keys():
if args_cmd[k] is not None: args_cfg[k] = args_cmd[k]
args = OmegaConf.create(args_cfg)
else:
args = args_cmd
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(args)
device = torch.device("cuda") if args.use_cuda else torch.device("cpu")
################################################################################################################
#### Setup source data loaders
################################################################################################################
print('Loading {} dataset'.format(args.source))
src_dset = UDADataset(args.source, args.LDS_type, is_target=False, img_dir=args.img_dir, batch_size=args.batch_size)
src_train_dset, _, _ = src_dset.get_dsets()
src_train_loader, src_val_loader, src_test_loader, src_train_idx = src_dset.get_loaders(class_balance_train=args.class_balance_source)
num_classes = src_dset.get_num_classes()
args.num_classes = num_classes
print('Number of classes: {}'.format(num_classes))
################################################################################################################
#### Train / load a source model
################################################################################################################
source_model = get_model(args.cnn, num_cls=num_classes, l2_normalize=args.l2_normalize, temperature=args.temperature)
source_file = '{}_{}_source.pth'.format(args.source, args.cnn)
source_path = os.path.join('checkpoints', 'source', source_file)
if args.load_source and os.path.exists(source_path):
print('\nFound source checkpoint at {}'.format(source_path))
source_model.load_state_dict(torch.load(source_path, map_location=device))
best_source_model = source_model
else:
print('\nSource checkpoint not found, training...')
best_source_model = utils.train_source_model(source_model, src_train_loader, src_val_loader, num_classes, args, device)
print('Evaluating source checkpoint on {} test set...'.format(args.source))
_, cm_source = utils.test(best_source_model, device, src_test_loader, split="test", num_classes=num_classes)
per_class_acc_source = cm_source.diagonal().numpy() / cm_source.sum(axis=1).numpy()
per_class_acc_source = per_class_acc_source.mean() * 100
out_str = '{} Avg. acc.: {:.2f}% '.format(args.source, per_class_acc_source)
print(out_str)
model = copy.deepcopy(best_source_model)
################################################################################################################
#### Setup target data loaders
################################################################################################################
print('\nLoading {} dataset'.format(args.target))
target_dset = UDADataset(args.target, args.LDS_type, is_target=True, img_dir=args.img_dir, valid_ratio=0, batch_size=args.batch_size)
target_dset.get_dsets()
# Manually long tail target training set for SVHN->MNIST-LT adaptation
if args.LDS_type in ['IF1', 'IF20', 'IF50', 'IF100']:
target_dset.long_tail_train('{}_ixs_{}'.format(args.target, args.LDS_type))
print('Evaluating source checkpoint on {} test set...'.format(args.target))
target_train_loader, target_val_loader, target_test_loader, tgt_train_idx = target_dset.get_loaders()
acc_before, cm_before = utils.test(model, device, target_test_loader, split="test", num_classes=num_classes)
per_class_acc_before = cm_before.diagonal().numpy() / cm_before.sum(axis=1).numpy()
per_class_acc_before = per_class_acc_before.mean() * 100
out_str = '{}->{}-LT ({}), Before {}:\t Avg. acc={:.2f}%\tAgg. acc={:.2f}%'.format(args.source, args.target, args.LDS_type, \
args.da_strat, per_class_acc_before, acc_before)
print(out_str)
################################################################################################################
#### Unsupervised adaptation of source model to target
################################################################################################################
da_file = '{:s}_{:s}_{}_{}_net_{:s}_{:s}_{:s}.pth'.format(args.id, args.da_strat, args.da_lr, args.cnn, \
args.source, args.target, args.LDS_type)
outdir = 'checkpoints'
os.makedirs(os.path.join(outdir, args.da_strat), exist_ok=True)
outfile = os.path.join(outdir, args.da_strat, da_file)
model_name = 'AdaptNet'
if args.load_da and os.path.exists(outfile):
print('Trained {} checkpoint found: {}, loading...\n'.format(args.da_strat, outfile))
net = get_model(model_name, num_cls=num_classes, weights_init=outfile, model=args.cnn, \
l2_normalize=args.l2_normalize, temperature=args.temperature)
source_model_adapt = net.tgt_net
else:
net = get_model(model_name, model=args.cnn, num_cls=num_classes, src_weights_init=source_path, \
l2_normalize=args.l2_normalize, temperature=args.temperature).to(device)
print(net)
print('Training {} {} model for {}->{}-LT ({})\n'.format(args.da_strat, args.cnn, args.source, args.target, args.LDS_type))
opt_net = utils.generate_optimizer(net.tgt_net, args, mode='da')
solver = get_solver(args.da_strat, net.tgt_net, src_train_loader, \
target_train_loader, tgt_train_idx, opt_net, device, num_classes, args)
for epoch in range(args.da_num_epochs):
if args.pseudo_balance_target:
print('\nEpoch {}: Re-estimating probabilities for pseudo-balancing...'.format(epoch))
# Approximately class-balance target dataloader using pseudolabels at the start of each epoch
target_dset_copy = copy.deepcopy(target_dset)
src_train_dset_copy = copy.deepcopy(src_train_loader.dataset)
_, gtlabels, plabels = utils.get_embedding(solver.net, target_train_loader, device, num_classes, args)
target_dset_copy.train_dataset.targets_copy = copy.deepcopy(target_dset_copy.train_dataset.targets) # Create backup of actual labels
target_dset_copy.train_dataset.targets = plabels
tgt_train_loader_pbalanced, _, _, _ = target_dset_copy.get_loaders(class_balance_train=True)
tgt_train_loader_pbalanced.dataset.targets_copy = target_dset_copy.train_dataset.targets_copy
solver.tgt_loader = tgt_train_loader_pbalanced
if args.da_strat == 'dann':
opt_dis = utils.generate_optimizer(net.discriminator, args, mode='da')
solver.solve(epoch, net.discriminator, opt_dis)
else:
solver.solve(epoch)
print('Saving to', outfile)
net.save(outfile)
source_model_adapt = net.tgt_net
# Evaluate adapted model
print('\nEvaluating adapted model on {} test set'.format(args.target))
acc_after, cm_after = utils.test(source_model_adapt, device, target_test_loader, split="test", num_classes=num_classes)
per_class_acc_after = cm_after.diagonal().numpy() / cm_after.sum(axis=1).numpy()
per_class_acc_after = per_class_acc_after.mean() * 100
print('###################################')
out_str = '{}->{}-LT ({}), Before {}:\t Avg. acc={:.2f}%\tAgg. acc={:.2f}%'.format(args.source, args.target, args.LDS_type, \
args.da_strat, per_class_acc_before, acc_before)
out_str += '\n\t\t\tAfter {}:\t Avg. acc={:.2f}%\tAgg. acc={:.2f}%'.format(args.da_strat, per_class_acc_after, acc_after)
print(out_str)
utils.plot_accuracy_statistics(cm_before, cm_after, num_classes, args, target_train_loader)
if __name__ == '__main__':
main()