-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinter_session_validation.py
136 lines (132 loc) · 6.46 KB
/
inter_session_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from copy import deepcopy
import numpy as np
import torch
import lightning as l
from lightning.pytorch.callbacks import ModelCheckpoint, LearningRateMonitor
from lightning_fabric.accelerators import find_usable_cuda_devices
from utils.config_parser import ConfigParserYaml
from graph.model import ModelBaseline
from data import get_dataloader
from utils import get_num_devices, setup_seed
if __name__ == "__main__":
# load configuration
parser = ConfigParserYaml(description='Training Configuration')
args = parser.parse()
# setup training
setup_seed(seed=args.ExpConfig.seed, use_cuda=args.ExpConfig.use_cuda, cudnn_benchmark=args.ExpConfig.cudnn_benchmark)
torch.set_float32_matmul_precision("high")
num_devices = get_num_devices(use_cuda=args.ExpConfig.use_cuda) if isinstance(args.ExpConfig.num_devices, int) and args.ExpConfig.num_devices == -1 else args.ExpConfig.num_devices
if (isinstance(num_devices, list) and len(num_devices) > 1) or (isinstance(num_devices, int) and num_devices > 1):
strategy = "ddp_find_unused_parameters_false"
else:
strategy = "auto"
# setup callbacks
base_pl_callbacks = [
LearningRateMonitor(logging_interval="epoch")
]
if args.ExpConfig.summary:
# setup summary callback
from pytorch_lightning.callbacks import ModelSummary
base_pl_callbacks += [ModelSummary()]
# setup logger
if args.ExpConfig.log == "tensorboard":
# tensorboard logger
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
logger = TensorBoardLogger(save_dir=args.ExpConfig.exp_path, name="logs", max_queue=100)
elif args.ExpConfig.log == "neptune":
# neptune logger
from pytorch_lightning.loggers.neptune import NeptuneLogger
logger = NeptuneLogger(
project=f"<NEPTUNE_PROJECT_NAME>",
api_key="<NEPTUNE_API_KEY>",
log_model_checkpoints=False,
tags=args.ExpConfig.tags,
capture_stdout=False,
capture_stderr=False,
capture_hardware_metrics=False,
name=args.ExpConfig.name,
)
else:
# csv logger
from pytorch_lightning.loggers.csv_logs import CSVLogger
logger = CSVLogger(save_dir=args.ExpConfig.exp_path, name='logs')
logger.log_hyperparams(args)
# setup model
network_configs = deepcopy(args.NetworkConfig)
criterion_configs = deepcopy(args.LossConfig)
optimizer_configs = deepcopy(args.OptimConfig)
scheduler_configs = deepcopy(args.SchedulerConfig)
metric_configs = deepcopy(args.MetricConfig)
model = ModelBaseline(network_kwargs=network_configs,
criterion_kwargs=criterion_configs,
optimizer_kwargs=optimizer_configs,
scheduler_kwargs=scheduler_configs,
metric_kwargs=metric_configs,
logger=args.ExpConfig.log)
# set model summarization
if args.ExpConfig.summary:
if args.ExpConfig.log == 'neptune':
logger.log_model_summary(model)
# get dataloader
data_configs = deepcopy(args.DataConfig)
data = get_dataloader(**data_configs)
best_ckpts, best_accs, best_baccs, best_mccs, best_f1s = [], [], [], [], []
# setup trainer
for k in range(1, args.ExpConfig.kfold + 1):
callbacks = [ModelCheckpoint(dirpath=args.ExpConfig.exp_path + f"/checkpoints_fold{k}",
filename="model-{epoch:02d}",
monitor="val/accuracy",
mode="max",
save_last=False,
every_n_epochs=1,
save_weights_only=True,
save_on_train_epoch_end=True)] + base_pl_callbacks
data.setup(stage="fit", k=k)
num_batches = len(data.train_dataloader()) // (len(num_devices) if isinstance(num_devices, list) else num_devices)
model.reset_parameters()
trainer = l.Trainer(
accelerator="gpu" if args.ExpConfig.use_cuda else "cpu",
devices=find_usable_cuda_devices(num_devices) if isinstance(num_devices, int) else num_devices,
strategy=strategy,
logger=logger,
callbacks=callbacks,
max_epochs=args.ExpConfig.num_epochs,
num_sanity_val_steps=0,
log_every_n_steps=num_batches,
gradient_clip_algorithm="norm",
gradient_clip_val=1.0
)
# train model
trainer.fit(model, train_dataloaders=data.train_dataloader(), val_dataloaders=data.val_dataloader())
# test model
data.setup(stage="test", k=k)
trainer.test(model, dataloaders=data.test_dataloader(), ckpt_path="best")
# save best model
best_accs.append(model.best_acc.detach().cpu().item())
best_baccs.append(model.best_bacc.detach().cpu().item())
best_mccs.append(model.best_mcc.detach().cpu().item())
best_f1s.append(model.best_f1.detach().cpu().item())
best_ckpts.append(callbacks[0].best_model_path)
print(f"Test accuracy: {best_accs}")
print(f"Mean accuracy: {np.array(best_accs).mean()}")
print(f"Std accuracy: {np.array(best_accs).std()}")
print(f"\nTest balanced accuracy: {best_baccs}")
print(f"Mean balanced accuracy: {np.array(best_baccs).mean()}")
print(f"Std balanced accuracy: {np.array(best_baccs).std()}")
print(f"\nTest MCC: {best_mccs}")
print(f"Mean MCC: {np.array(best_mccs).mean()}")
print(f"Std MCC: {np.array(best_mccs).std()}")
print(f"\nTest F1: {best_f1s}")
print(f"Mean F1: {np.array(best_f1s).mean()}")
print(f"Std F1: {np.array(best_f1s).std()}")
# save best network checkpoint after training
print("\nSaving best model...")
model = ModelBaseline.load_from_checkpoint(best_ckpts[best_accs.index(max(best_accs))],
network_kwargs=network_configs,
criterion_kwargs=criterion_configs,
optimizer_kwargs=optimizer_configs,
scheduler_kwargs=scheduler_configs,
metric_kwargs=metric_configs,
logger=args.ExpConfig.log)
torch.save(model.net.state_dict(), args.ExpConfig.exp_path + "/net_best.pt")
print("Done!")