-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfeature_extraction.py
110 lines (89 loc) · 3.3 KB
/
feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
from os import makedirs, path
import numpy as np
import torch
from torch.nn import DataParallel
from tqdm import tqdm
from data.data_loader_test import TestDataLoader
from model.resnet import ResNet
from utils.model_loader import load_state
class Extractor:
def __init__(
self,
model_path,
source,
image_list,
dest,
net_mode,
depth,
batch_size,
workers,
drop_ratio,
device,
):
self.loader = TestDataLoader(batch_size, workers, source, image_list)
self.batch_size = batch_size
self.image_paths = np.asarray(self.loader.dataset.samples)
self.model = None
self.device = device
self.destination = dest
self.model = self.create_model(depth, drop_ratio, net_mode, model_path)
self.model.eval()
def create_model(self, depth, drop_ratio, net_mode, model_path):
model = DataParallel(ResNet(depth, drop_ratio, net_mode)).to(self.device)
load_state(
model=model, path_to_model=model_path, model_only=True, load_head=False
)
model.eval()
return model
def run(self):
idx = 0
with torch.no_grad():
for imgs in tqdm(iter(self.loader)):
imgs = imgs.to(device)
embeddings = self.model(imgs)
embeddings = embeddings.cpu().numpy()
image_paths = self.image_paths[idx : idx + self.batch_size]
self.save_features(image_paths, embeddings)
idx += self.batch_size
def save_features(self, image_paths, embeddings):
for i in range(0, len(embeddings)):
image_name = path.split(image_paths[i])[1]
sub_folder = path.basename(path.normpath(path.split(image_paths[i])[0]))
dest_path = path.join(self.destination, sub_folder)
if not path.exists(dest_path):
makedirs(dest_path)
features_name = path.join(dest_path, image_name[:-3] + "npy")
np.save(features_name, embeddings[i])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Extract features.")
parser.add_argument("--source", "-s", help="Path to the images.")
parser.add_argument("--image_list", "-i", help="File with images names.")
parser.add_argument("--dest", "-d", help="Path to save the predictions.")
parser.add_argument("--batch_size", "-b", help="Batch size.", default=250, type=int)
parser.add_argument("--model", "-m", help="Path to model.")
parser.add_argument(
"--net_mode", "-n", help="Residual type [ir, ir_se].", default="ir_se", type=str
)
parser.add_argument(
"--depth", "-dp", help="Number of layers [50, 100, 152].", default=50, type=int
)
parser.add_argument("--workers", "-w", help="Workers number.", default=4, type=int)
args = parser.parse_args()
if not path.exists(args.dest):
makedirs(args.dest)
drop_ratio = 0.4
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
extractor = Extractor(
args.model,
args.source,
args.image_list,
args.dest,
args.net_mode,
args.depth,
args.batch_size,
args.workers,
drop_ratio,
device,
)
extractor.run()