-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoffline.cpp
491 lines (392 loc) · 16.4 KB
/
offline.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
///PTM HAI
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math,O3")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native")
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <climits>
#include <cassert>
#include <chrono>
#include <vector>
#include <random>
#include <stack>
#include <cmath>
#include <map>
/**
* @tparam T Sorts an array of pairs. The first element in the pairs has to be of type int/long long/__int128.
* @param v Pointer to an array.
* @param l First position that is sorted (v + l).
* @param r Last position that is sorted (v + r).
* the sort is unstable.
*/
template<typename T>
void radixSortPairs(T *v, int l, int r) {
const int base = 256;
std::array<std::vector<T>, 2> u;
u[0].resize(r+1); u[1].resize(r+1);
int cnt[base] = {0};
int i, j, z, pin;
auto mel = std::min_element(v+l, v+r+1)->first;
if (mel > 0) mel = 0;
for (i = l; i <= r; i++) {
u[0][i].first = v[i].first - mel;
u[0][i].second = v[i].second;
}
int noPasses = sizeof(v[l].first); ///4 for int, 8 for ll, 16 for __int128.
for (i = 0, pin = 0; i < noPasses; i++, pin ^= 1) {
std::fill(cnt, cnt + base, 0);
for (j = l; j <= r; j++) {
cnt[(u[pin][j].first >> (i << 3)) & 255]++;
}
for (j = 1; j < base; j++) {
cnt[j] += cnt[j-1];
}
for (j = r; j >= l; j--) {
z = ((u[pin][j].first >> (i << 3)) & 255);
u[pin^1][l + (--cnt[z])] = u[pin][j];
}
}
for (i = l; i <= r; i++) {
v[i].first = u[pin][i].first + mel;
v[i].second = u[pin][i].second;
}
}
namespace xoshiro256pp {
///Written in 2019 by David Blackman and Sebastiano Vigna ([email protected])
///https://prng.di.unimi.it/splitmix64.c
///https://prng.di.unimi.it/xoshiro256plusplus.c
///https://vigna.di.unimi.it/ftp/papers/xorshift.pdf
static inline uint64_t rotl(const uint64_t x, int k) {
return (x << k) | (x >> (64 - k));
}
///using splitmix64 to initialize the state of xoshiro256++. we use it for only one value after each re-seeding.
inline uint64_t seed_and_get(uint64_t hh1, uint64_t hh2) {
hh1 += 0x9e3779b97f4a7c15; ///s[0] from xoshiro256plusplus.
hh1 = (hh1 ^ (hh1 >> 30)) * 0xbf58476d1ce4e5b9;
hh1 = (hh1 ^ (hh1 >> 27)) * 0x94d049bb133111eb;
hh1 = hh1 ^ (hh1 >> 31);
hh2 += 0x3c6ef372fe94f82a; ///s[3] from xoshiro256plusplus. 0x9e3779b97f4a7c15 * 2 - 2**64.
hh2 = (hh2 ^ (hh2 >> 30)) * 0xbf58476d1ce4e5b9;
hh2 = (hh2 ^ (hh2 >> 27)) * 0x94d049bb133111eb;
hh2 = hh2 ^ (hh2 >> 31);
return rotl(hh1 + hh2, 23) + hh1;
}
}
class ExpoSizeStrSrc {
private:
static constexpr uint32_t ct229 = (1 << 29) - 1;
static constexpr uint64_t M61 = (1ULL << 61) - 1, M61_2x = M61 * 2;
static constexpr int maxn = 100'000, ml2 = 17;
///trie built from dictionary entries.
struct TrieNode {
std::vector<int> indexesEndingHere; ///the indexes whose dictionary strings end here.
std::map<uint64_t, TrieNode *> sons; ///do I have a son with some associated hash?
std::vector<std::pair<int, int>> idLevsCurrentlyHere; ///keep track of tokens that are in this trie node.
};
const int TNBufSz = 4096; ///8192.
int TNBufInd = TNBufSz;
TrieNode *TNBuffer = nullptr;
TrieNode *trieNodeAlloc() {
if (TNBufInd >= TNBufSz) {
TNBuffer = new TrieNode[TNBufSz];
TNBufInd = 0;
}
return &TNBuffer[TNBufInd++];
}
std::pair<int64_t, int64_t> base, basePow[maxn+1], hhPref[maxn+1]; ///the randomly chosen bases, their powers, and the hash prefixes of s.
std::pair<uint64_t, uint64_t> logOtp[ml2]; ///keep the one time pads for subsequences of lengths 1, 2, 4, ...
uint64_t hash[(1<<ml2)*ml2]; ///effectively the hashes from the DAG nodes. lazily calculated in massSearch (computed when propagating from the starter node, used later). call as hash[id].
std::pair<uint64_t, int> subtreeHash[(1<<ml2)*ml2]; ///first = hash, second = id.
int id[(1<<ml2)*ml2]; ///in whom was a node united.
int leverage[(1<<ml2)*ml2]; ///lev[x] = how many nodes were united in x. also consider x when counting.
int cntStarterNodeChildren = 0, starterNodeChildren[maxn*ml2]; ///post compression, who are the starter node's children?
int n, strE2 = 0; ///2^strE2 is the smallest power of 2 that is >= n.
std::string s;
///a1 = a1 * b1 % M61.
///a2 = a2 * b2 % M61.
static void mul2x(int64_t &a1, const int64_t &b1, int64_t &a2, const int64_t &b2) {
uint64_t a1_hi = a1 >> 32, a1_lo = (uint32_t)a1, b1_hi = b1 >> 32, b1_lo = (uint32_t)b1,
a2_hi = a2 >> 32, a2_lo = (uint32_t)a2, b2_hi = b2 >> 32, b2_lo = (uint32_t)b2,
ans_1 = 0, ans_2 = 0, tmp_1 = 0, tmp_2 = 0;
tmp_1 = a1_hi * b1_lo + a1_lo * b1_hi;
tmp_2 = a2_hi * b2_lo + a2_lo * b2_hi;
tmp_1 = ((tmp_1 & ct229) << 32) + (tmp_1 >> 29);
tmp_2 = ((tmp_2 & ct229) << 32) + (tmp_2 >> 29);
tmp_1 += (a1_hi * b1_hi) << 3;
tmp_2 += (a2_hi * b2_hi) << 3;
ans_1 = (tmp_1 >> 61) + (tmp_1 & M61);
ans_2 = (tmp_2 >> 61) + (tmp_2 & M61);
tmp_1 = a1_lo * b1_lo;
tmp_2 = a2_lo * b2_lo;
ans_1 += (tmp_1 >> 61) + (tmp_1 & M61);
ans_2 += (tmp_2 >> 61) + (tmp_2 & M61);
ans_1 = (ans_1 >= M61_2x? ans_1 - M61_2x: (ans_1 >= M61? ans_1 - M61: ans_1));
ans_2 = (ans_2 >= M61_2x? ans_2 - M61_2x: (ans_2 >= M61? ans_2 - M61: ans_2));
a1 = ans_1;
a2 = ans_2;
}
///128bit hash ---(xorshift)---> uniform spread that fits in 8 bytes.
static uint64_t reduceHash(std::pair<int64_t, int64_t> &hh, std::pair<uint64_t, uint64_t> otp) {
otp.first ^= hh.first;
otp.second ^= hh.second;
return xoshiro256pp::seed_and_get(otp.first, otp.second);
}
public:
TrieNode *trieRoot = trieNodeAlloc();
std::vector<int> massSearchResults; ///results after mass-search. how many times does .. appear in s?
ExpoSizeStrSrc(std::string &s_) {
s = std::move(s_);
n = (int)s.size();
int i, j, z;
///current time, current clock cycle count, heap address given by the OS. https://codeforces.com/blog/entry/60442
std::seed_seq seq {
(uint64_t) std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::high_resolution_clock::now().time_since_epoch()).count(),
(uint64_t) __builtin_ia32_rdtsc(),
(uint64_t) (uintptr_t) std::make_unique<char>().get()
};
std::mt19937_64 mt(seq);
std::uniform_int_distribution<int64_t> baseDist(27, M61 - 1);
std::uniform_int_distribution<uint64_t> otpDist(0, ULLONG_MAX);
base = std::make_pair(baseDist(mt), baseDist(mt)); ///uniformly and randomly choose 2 bases to use.
while (base.second == base.first) {
base.second = baseDist(mt);
}
///logOtp is not used in the constructor. here we need otps for lengths 1, 3, 7, ...
///1, 2, 4, ... are used in queries.
for (j = 0; (1<<j) <= n; j++) {
logOtp[j].first = otpDist(mt);
logOtp[j].second = otpDist(mt);
}
///compute base powers, hashes for the prefixes, strE2.
basePow[0] = std::make_pair(1, 1);
hhPref[0] = std::make_pair(0, 0);
for (i = 1; i <= n; i++) {
basePow[i] = basePow[i-1];
mul2x(basePow[i].first, base.first, basePow[i].second, base.second);
hhPref[i] = hhPref[i-1];
mul2x(hhPref[i].first, base.first, hhPref[i].second, base.second);
hhPref[i].first += s[i-1] - 'a' + 1;
hhPref[i].second += s[i-1] - 'a' + 1;
hhPref[i].first = (hhPref[i].first >= M61? hhPref[i].first - M61: hhPref[i].first);
hhPref[i].second = (hhPref[i].second >= M61? hhPref[i].second - M61: hhPref[i].second);
}
while ((1<<strE2) < n) {
strE2++;
}
///compute the subtree hashes.
std::pair<int64_t, int64_t> subtractedHash[26];
std::pair<uint64_t, uint64_t> otp; ///the subtrees have associated substring lengths of 1, 3, 7, ...
int treeId = 0, subtreeHashSize = 0;
for (j = 0; (1<<j) <= n; j++) {
if (j == 0) {
otp = logOtp[0]; ///obligated to use the already generated value for length = 1.
} else {
otp.first = otpDist(mt);
otp.second = otpDist(mt);
}
int len = std::min((1<<(j+1)) - 1, n);
///precalculating what we will decrease while rolling the hash.
///subtractedHash[z] = 27 ** (len - 1) * conv('a' + z). conv('a') = 1.
subtractedHash[0] = basePow[len - 1];
for (z = 1; z < 26; z++) {
subtractedHash[z].first = subtractedHash[z-1].first + basePow[len - 1].first;
subtractedHash[z].second = subtractedHash[z-1].second + basePow[len - 1].second;
subtractedHash[z].first = (subtractedHash[z].first >= M61? subtractedHash[z].first - M61: subtractedHash[z].first);
subtractedHash[z].second = (subtractedHash[z].second >= M61? subtractedHash[z].second - M61: subtractedHash[z].second);
}
///if the subtree hash would want more than we could possibly get from s, we will put just as much as we can.
std::pair<int64_t, int64_t> hh(0, 0), tmp;
for (i = 0; i < len; i++) {
mul2x(hh.first, base.first, hh.second, base.second);
hh.first += s[i] - 'a' + 1;
hh.second += s[i] - 'a' + 1;
hh.first = (hh.first >= M61? hh.first - M61: hh.first);
hh.second = (hh.second >= M61? hh.second - M61: hh.second);
}
treeId = j * (1<<strE2);
subtreeHash[subtreeHashSize++] = std::make_pair(reduceHash(hh, otp), treeId);
treeId++;
for (i = 1; i + (1<<j) - 1 < n; i++) {
if (i + len-1 < n) {
hh.first -= subtractedHash[s[i-1] - 'a'].first;
hh.second -= subtractedHash[s[i-1] - 'a'].second;
hh.first = (hh.first < 0? hh.first + M61: hh.first);
hh.second = (hh.second < 0? hh.second + M61: hh.second);
mul2x(hh.first, base.first, hh.second, base.second);
hh.first += s[i+len-1] - 'a' + 1;
hh.second += s[i+len-1] - 'a' + 1;
hh.first = (hh.first >= M61? hh.first - M61: hh.first);
hh.second = (hh.second >= M61? hh.second - M61: hh.second);
} else {
tmp = std::pair<int64_t, int64_t>(s[i-1] - 'a' + 1, s[i-1] - 'a' + 1);
mul2x(tmp.first, basePow[n-i].first, tmp.second, basePow[n-i].second);
hh.first -= tmp.first;
hh.second -= tmp.second;
hh.first = (hh.first < 0? hh.first + M61: hh.first);
hh.second = (hh.second < 0? hh.second + M61: hh.second);
}
subtreeHash[subtreeHashSize++] = std::make_pair(reduceHash(hh, otp), treeId);
treeId++;
}
}
///sort all the subtree hashes. afterwards, we can compress the duplicates. (update the leverages, ids)
radixSortPairs<std::pair<uint64_t, int>>(subtreeHash, 0, subtreeHashSize-1);
i = 0;
while (i < subtreeHashSize) {
j = i; ///go through all indexes with the same hash as subtreeHash[i].
z = i; ///keep in z the index with the minimum id. also helpful when trying to solve problems like
///"find the first occurence of the words from ts in s"
while (j < subtreeHashSize && subtreeHash[j].first == subtreeHash[i].first) {
z = (subtreeHash[j].second < subtreeHash[z].second? j: z);
j++;
}
///unite all other nodes with the same hash in z.
leverage[subtreeHash[z].second] = j - i;
starterNodeChildren[cntStarterNodeChildren++] = subtreeHash[z].second;
for (; i < j; i++) {
id[subtreeHash[i].second] = subtreeHash[z].second;
}
}
std::sort(starterNodeChildren, starterNodeChildren + cntStarterNodeChildren); ///!!copiii lui starter nu sunt sortati..
trieRoot->idLevsCurrentlyHere.emplace_back(-1, INT_MAX); ///-1 is the starter node.
}
/**
* How many times does a string appear in s?
* @param t the string in question.
*/
void insertQueriedString(std::string &t) {
massSearchResults.push_back(0);
if (t.size() > maxn || t.empty()) {
return;
}
int i, j, z;
TrieNode *trieNow = trieRoot, *trieNext = nullptr;
std::pair<int64_t, int64_t> hh;
uint64_t hh_red;
///split t into a substring chain, each substring having a distinct power of 2 length. add the chain to the trie.
for (i = ml2, z = 0; i >= 0; i--) {
if (t.size() & (1<<i)) {
hh = std::make_pair(0, 0);
for (j = z + (1<<i); z < j; z++) {
mul2x(hh.first, base.first, hh.second, base.second);
hh.first += t[z] - 'a' + 1;
hh.second += t[z] - 'a' + 1;
hh.first = (hh.first >= M61? hh.first - M61: hh.first);
hh.second = (hh.second >= M61? hh.second - M61: hh.second);
}
hh_red = reduceHash(hh, logOtp[i]);
auto it = trieNow->sons.find(hh_red);
if (it != trieNow->sons.end()) {
trieNow = it->second;
} else {
trieNext = trieNodeAlloc();
trieNow->sons[hh_red] = trieNext;
trieNow = trieNext;
}
}
}
trieNow->indexesEndingHere.push_back((int)massSearchResults.size() - 1);
}
/**
* Recursively propagates what is in the given trie node.
* @param trieNow current trie node to exploit.
*/
void massSearch(TrieNode *trieNow) {
if (!trieNow) return;
int levSum = 0; ///compute the sum of leverages of all chains that are in the trie node.
for (auto &x: trieNow->idLevsCurrentlyHere) {
levSum += x.second;
}
for (int x: trieNow->indexesEndingHere) {
massSearchResults[x] = levSum;
}
if (trieNow->sons.empty()) {
return;
}
///transform trieNow->sons in a sorted array.
int i = 0, cntSons = (int)trieNow->sons.size();
std::pair<uint64_t, TrieNode *> sons[cntSons];
for (auto &x: trieNow->sons) {
sons[i++] = x;
}
int dagNode, nn, levChain, p2, startInd, dagNodeP2 = 0, dagNodeStartInd = 0;
std::pair<int64_t, int64_t> hh;
uint64_t hh_red;
int m; ///how many children does the trie node have.
for (auto &x: trieNow->idLevsCurrentlyHere) {
std::tie(dagNode, levChain) = x;
///iterate through all of dagNode's children. compute the hashes of their nodes from the DAG. see if the hashes
///can be found on some edge that goes out from me (current trie node).
///count how many children does dagNode have.
if (dagNode == -1) { ///am in the starter node.
m = cntStarterNodeChildren;
} else { ///decode from the dagNode index its length and starting index.
dagNodeP2 = 1 << (dagNode >> strE2);
dagNodeStartInd = dagNode - (dagNode >> strE2) * (1 << strE2);
m = 0;
while ((1<<m) < dagNodeP2 && dagNodeStartInd + dagNodeP2 + (1 << m) - 1 < n) {
m++;
}
}
for (i = 0; i < m; i++) {
///compute the hash of the i-th child of dagNode (hhl).
///also need the minimum value of the leverages along the current chain (levChain).
if (dagNode == -1) {
nn = starterNodeChildren[i];
levChain = leverage[nn]; ///sthe lowest leverage on a chain is always the first. in this case it's leverage[nn].
p2 = 1 << (nn >> strE2); ///length of the string associated to nn.
startInd = nn - (nn >> strE2) * (1 << strE2); ///the index at which the associated string of nn begins in s.
///hh = hhPref[startInd + p2] - hhPref[startInd] * basePow[p2].
hh = hhPref[startInd];
mul2x(hh.first, basePow[p2].first, hh.second, basePow[p2].second);
hh.first = hhPref[startInd + p2].first - hh.first;
hh.second = hhPref[startInd + p2].second - hh.second;
hh.first = (hh.first < 0? hh.first + M61: hh.first);
hh.second = (hh.second < 0? hh.second + M61: hh.second);
hh_red = reduceHash(hh, logOtp[nn >> strE2]);
hash[nn] = hh_red; ///keep the value. might use it later in the search.
} else {
nn = id[(1 << strE2) * i + dagNodeStartInd + dagNodeP2]; ///we're sure that id[dagNode] = dagNode. it doesn't necessarily mean that id[nn] = nn in this case.
hh_red = hash[nn]; ///hash was already precalculated when extending from the starter node.
}
auto it = std::lower_bound(sons, sons + cntSons, std::make_pair(hh_red, nullptr),
[](const std::pair<uint64_t, TrieNode *> &a, std::pair<uint64_t, TrieNode *> b) {
return a.first < b.first;
});
if (it != sons + cntSons && it->first == hh_red) {
if (it->second->idLevsCurrentlyHere.empty() || it->second->idLevsCurrentlyHere.back().first != nn) {
it->second->idLevsCurrentlyHere.emplace_back(nn, levChain);
} else {
///duplicates may exist. possible to have multiple descendants with the same index after compression.
///because of the mode in which we compress (merge in the lowest index) =>
///we currently deal with a duplicate <=> nn == to the last id in it->second->idLevsCurrentlyHere.
it->second->idLevsCurrentlyHere.back().second += levChain;
}
}
}
}
for (auto &x: trieNow->sons) {
if (!x.second->idLevsCurrentlyHere.empty()) {
massSearch(x.second);
}
}
}
};
int main() {
std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout.tie(nullptr);
std::string s; std::cin >> s;
ExpoSizeStrSrc *E3S = new ExpoSizeStrSrc(s);
int n; std::cin >> n;
std::string t;
for (int i = 0; i < n; i++) {
std::cin >> t;
E3S->insertQueriedString(t);
}
E3S->massSearch(E3S->trieRoot);
for (int x: E3S->massSearchResults) {
std::cout << x << '\n';
}
delete E3S;
return 0;
}