-
-
Notifications
You must be signed in to change notification settings - Fork 452
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Revert "Merge pull request #2411 from vladmandic/master"
- Loading branch information
1 parent
886af2e
commit 267905e
Showing
282 changed files
with
43,168 additions
and
288 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
model: | ||
base_learning_rate: 1.0e-04 | ||
target: ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion | ||
params: | ||
embedding_dropout: 0.25 | ||
parameterization: "v" | ||
linear_start: 0.00085 | ||
linear_end: 0.0120 | ||
log_every_t: 200 | ||
timesteps: 1000 | ||
first_stage_key: "jpg" | ||
cond_stage_key: "txt" | ||
image_size: 96 | ||
channels: 4 | ||
cond_stage_trainable: false | ||
conditioning_key: crossattn-adm | ||
scale_factor: 0.18215 | ||
monitor: val/loss_simple_ema | ||
use_ema: False | ||
|
||
embedder_config: | ||
target: ldm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder | ||
|
||
noise_aug_config: | ||
target: ldm.modules.encoders.modules.CLIPEmbeddingNoiseAugmentation | ||
params: | ||
timestep_dim: 1024 | ||
noise_schedule_config: | ||
timesteps: 1000 | ||
beta_schedule: squaredcos_cap_v2 | ||
|
||
unet_config: | ||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel | ||
params: | ||
num_classes: "sequential" | ||
adm_in_channels: 2048 | ||
use_checkpoint: True | ||
image_size: 32 # unused | ||
in_channels: 4 | ||
out_channels: 4 | ||
model_channels: 320 | ||
attention_resolutions: [ 4, 2, 1 ] | ||
num_res_blocks: 2 | ||
channel_mult: [ 1, 2, 4, 4 ] | ||
num_head_channels: 64 # need to fix for flash-attn | ||
use_spatial_transformer: True | ||
use_linear_in_transformer: True | ||
transformer_depth: 1 | ||
context_dim: 1024 | ||
legacy: False | ||
|
||
first_stage_config: | ||
target: ldm.models.autoencoder.AutoencoderKL | ||
params: | ||
embed_dim: 4 | ||
monitor: val/rec_loss | ||
ddconfig: | ||
attn_type: "vanilla-xformers" | ||
double_z: true | ||
z_channels: 4 | ||
resolution: 256 | ||
in_channels: 3 | ||
out_ch: 3 | ||
ch: 128 | ||
ch_mult: | ||
- 1 | ||
- 2 | ||
- 4 | ||
- 4 | ||
num_res_blocks: 2 | ||
attn_resolutions: [ ] | ||
dropout: 0.0 | ||
lossconfig: | ||
target: torch.nn.Identity | ||
|
||
cond_stage_config: | ||
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder | ||
params: | ||
freeze: True | ||
layer: "penultimate" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
model: | ||
base_learning_rate: 1.0e-04 | ||
target: ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion | ||
params: | ||
embedding_dropout: 0.25 | ||
parameterization: "v" | ||
linear_start: 0.00085 | ||
linear_end: 0.0120 | ||
log_every_t: 200 | ||
timesteps: 1000 | ||
first_stage_key: "jpg" | ||
cond_stage_key: "txt" | ||
image_size: 96 | ||
channels: 4 | ||
cond_stage_trainable: false | ||
conditioning_key: crossattn-adm | ||
scale_factor: 0.18215 | ||
monitor: val/loss_simple_ema | ||
use_ema: False | ||
|
||
embedder_config: | ||
target: ldm.modules.encoders.modules.ClipImageEmbedder | ||
params: | ||
model: "ViT-L/14" | ||
|
||
noise_aug_config: | ||
target: ldm.modules.encoders.modules.CLIPEmbeddingNoiseAugmentation | ||
params: | ||
clip_stats_path: "checkpoints/karlo_models/ViT-L-14_stats.th" | ||
timestep_dim: 768 | ||
noise_schedule_config: | ||
timesteps: 1000 | ||
beta_schedule: squaredcos_cap_v2 | ||
|
||
unet_config: | ||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel | ||
params: | ||
num_classes: "sequential" | ||
adm_in_channels: 1536 | ||
use_checkpoint: True | ||
image_size: 32 # unused | ||
in_channels: 4 | ||
out_channels: 4 | ||
model_channels: 320 | ||
attention_resolutions: [ 4, 2, 1 ] | ||
num_res_blocks: 2 | ||
channel_mult: [ 1, 2, 4, 4 ] | ||
num_head_channels: 64 # need to fix for flash-attn | ||
use_spatial_transformer: True | ||
use_linear_in_transformer: True | ||
transformer_depth: 1 | ||
context_dim: 1024 | ||
legacy: False | ||
|
||
first_stage_config: | ||
target: ldm.models.autoencoder.AutoencoderKL | ||
params: | ||
embed_dim: 4 | ||
monitor: val/rec_loss | ||
ddconfig: | ||
attn_type: "vanilla-xformers" | ||
double_z: true | ||
z_channels: 4 | ||
resolution: 256 | ||
in_channels: 3 | ||
out_ch: 3 | ||
ch: 128 | ||
ch_mult: | ||
- 1 | ||
- 2 | ||
- 4 | ||
- 4 | ||
num_res_blocks: 2 | ||
attn_resolutions: [ ] | ||
dropout: 0.0 | ||
lossconfig: | ||
target: torch.nn.Identity | ||
|
||
cond_stage_config: | ||
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder | ||
params: | ||
freeze: True | ||
layer: "penultimate" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
model: | ||
base_learning_rate: 5.0e-07 | ||
target: ldm.models.diffusion.ddpm.LatentDepth2ImageDiffusion | ||
params: | ||
linear_start: 0.00085 | ||
linear_end: 0.0120 | ||
num_timesteps_cond: 1 | ||
log_every_t: 200 | ||
timesteps: 1000 | ||
first_stage_key: "jpg" | ||
cond_stage_key: "txt" | ||
image_size: 64 | ||
channels: 4 | ||
cond_stage_trainable: false | ||
conditioning_key: hybrid | ||
scale_factor: 0.18215 | ||
monitor: val/loss_simple_ema | ||
finetune_keys: null | ||
use_ema: False | ||
|
||
depth_stage_config: | ||
target: ldm.modules.midas.api.MiDaSInference | ||
params: | ||
model_type: "dpt_hybrid" | ||
|
||
unet_config: | ||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel | ||
params: | ||
use_checkpoint: True | ||
image_size: 32 # unused | ||
in_channels: 5 | ||
out_channels: 4 | ||
model_channels: 320 | ||
attention_resolutions: [ 4, 2, 1 ] | ||
num_res_blocks: 2 | ||
channel_mult: [ 1, 2, 4, 4 ] | ||
num_head_channels: 64 # need to fix for flash-attn | ||
use_spatial_transformer: True | ||
use_linear_in_transformer: True | ||
transformer_depth: 1 | ||
context_dim: 1024 | ||
legacy: False | ||
|
||
first_stage_config: | ||
target: ldm.models.autoencoder.AutoencoderKL | ||
params: | ||
embed_dim: 4 | ||
monitor: val/rec_loss | ||
ddconfig: | ||
#attn_type: "vanilla-xformers" | ||
double_z: true | ||
z_channels: 4 | ||
resolution: 256 | ||
in_channels: 3 | ||
out_ch: 3 | ||
ch: 128 | ||
ch_mult: | ||
- 1 | ||
- 2 | ||
- 4 | ||
- 4 | ||
num_res_blocks: 2 | ||
attn_resolutions: [ ] | ||
dropout: 0.0 | ||
lossconfig: | ||
target: torch.nn.Identity | ||
|
||
cond_stage_config: | ||
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder | ||
params: | ||
freeze: True | ||
layer: "penultimate" | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
import torch | ||
import diffusers.models.lora as diffusers_lora | ||
import network | ||
from modules import devices | ||
|
||
class ModuleTypeOFT(network.ModuleType): | ||
def create_module(self, net: network.Network, weights: network.NetworkWeights): | ||
""" | ||
weights.w.items() | ||
alpha : tensor(0.0010, dtype=torch.bfloat16) | ||
oft_blocks : tensor([[[ 0.0000e+00, 1.4400e-04, 1.7319e-03, ..., -8.8882e-04, | ||
5.7373e-03, -4.4250e-03], | ||
[-1.4400e-04, 0.0000e+00, 8.6594e-04, ..., 1.5945e-03, | ||
-8.5449e-04, 1.9684e-03], ...etc... | ||
, dtype=torch.bfloat16)""" | ||
|
||
if "oft_blocks" in weights.w.keys(): | ||
module = NetworkModuleOFT(net, weights) | ||
return module | ||
else: | ||
return None | ||
|
||
|
||
class NetworkModuleOFT(network.NetworkModule): | ||
def __init__(self, net: network.Network, weights: network.NetworkWeights): | ||
super().__init__(net, weights) | ||
|
||
self.weights = weights.w.get("oft_blocks").to(device=devices.device) | ||
self.dim = self.weights.shape[0] # num blocks | ||
self.alpha = self.multiplier() | ||
self.block_size = self.weights.shape[-1] | ||
|
||
def get_weight(self): | ||
block_Q = self.weights - self.weights.transpose(1, 2) | ||
I = torch.eye(self.block_size, device=devices.device).unsqueeze(0).repeat(self.dim, 1, 1) | ||
block_R = torch.matmul(I + block_Q, (I - block_Q).inverse()) | ||
block_R_weighted = self.alpha * block_R + (1 - self.alpha) * I | ||
R = torch.block_diag(*block_R_weighted) | ||
return R | ||
|
||
def calc_updown(self, orig_weight): | ||
R = self.get_weight().to(device=devices.device, dtype=orig_weight.dtype) | ||
if orig_weight.dim() == 4: | ||
updown = torch.einsum("oihw, op -> pihw", orig_weight, R) * self.calc_scale() | ||
else: | ||
updown = torch.einsum("oi, op -> pi", orig_weight, R) * self.calc_scale() | ||
|
||
return self.finalize_updown(updown, orig_weight, orig_weight.shape) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.