This repository has been archived by the owner on Jan 18, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrsa.js
463 lines (394 loc) · 7.58 KB
/
rsa.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/* RSA public key encryption/decryption
* The following functions are (c) 2000 by John M Hanna and are
* released under the terms of the Gnu Public License.
* You must freely redistribute them with their source -- see the
* GPL for details.
* -- Latest version found at http://sourceforge.net/projects/shop-js
*
* Modifications and GnuPG multi precision integer (mpi) conversion added
* 2004 by Herbert Hanewinkel, www.haneWIN.de
*/
// --- Arbitrary Precision Math ---
// badd(a,b), bsub(a,b), bsqr(a), bmul(a,b)
// bdiv(a,b), bmod(a,b), bexpmod(g,e,m), bmodexp(g,e,m)
// bs is the shift, bm is the mask
// set single precision bits to 28
var bs=28;
var bx2=1<<bs, bm=bx2-1, bx=bx2>>1, bd=bs>>1, bdm=(1<<bd)-1;
var log2=Math.log(2);
function zeros(n)
{
var r=new Array(n);
while(n-->0) r[n]=0;
return r;
}
function zclip(r)
{
var n = r.length;
if(r[n-1]) return r;
while(n>1 && r[n-1]==0) n--;
return r.slice(0,n);
}
// returns bit length of integer x
function nbits(x)
{
var n = 1, t;
if((t=x>>>16) != 0) { x = t; n += 16; }
if((t=x>>8) != 0) { x = t; n += 8; }
if((t=x>>4) != 0) { x = t; n += 4; }
if((t=x>>2) != 0) { x = t; n += 2; }
if((t=x>>1) != 0) { x = t; n += 1; }
return n;
}
function badd(a,b)
{
var al=a.length;
var bl=b.length;
if(al < bl) return badd(b,a);
var r=new Array(al);
var c=0, n=0;
for(; n<bl; n++)
{
c+=a[n]+b[n];
r[n]=c & bm;
c>>>=bs;
}
for(; n<al; n++)
{
c+=a[n];
r[n]=c & bm;
c>>>=bs;
}
if(c) r[n]=c;
return r;
}
function bsub(a,b)
{
var al=a.length;
var bl=b.length;
if(bl > al) return [];
if(bl == al)
{
if(b[bl-1] > a[bl-1]) return [];
if(bl==1) return [a[0]-b[0]];
}
var r=new Array(al);
var c=0;
for(var n=0; n<bl; n++)
{
c+=a[n]-b[n];
r[n]=c & bm;
c>>=bs;
}
for(;n<al; n++)
{
c+=a[n];
r[n]=c & bm;
c>>=bs;
}
if(c) return [];
return zclip(r);
}
function ip(w, n, x, y, c)
{
var xl = x&bdm;
var xh = x>>bd;
var yl = y&bdm;
var yh = y>>bd;
var m = xh*yl+yh*xl;
var l = xl*yl+((m&bdm)<<bd)+w[n]+c;
w[n] = l&bm;
c = xh*yh+(m>>bd)+(l>>bs);
return c;
}
// Multiple-precision squaring, HAC Algorithm 14.16
function bsqr(x)
{
var t = x.length;
var n = 2*t;
var r = zeros(n);
var c = 0;
var i, j;
for(i = 0; i < t; i++)
{
c = ip(r,2*i,x[i],x[i],0);
for(j = i+1; j < t; j++)
{
c = ip(r,i+j,2*x[j],x[i],c);
}
r[i+t] = c;
}
return zclip(r);
}
// Multiple-precision multiplication, HAC Algorithm 14.12
function bmul(x,y)
{
var n = x.length;
var t = y.length;
var r = zeros(n+t-1);
var c, i, j;
for(i = 0; i < t; i++)
{
c = 0;
for(j = 0; j < n; j++)
{
c = ip(r,i+j,x[j],y[i],c);
}
r[i+n] = c;
}
return zclip(r);
}
function toppart(x,start,len)
{
var n=0;
while(start >= 0 && len-->0) n=n*bx2+x[start--];
return n;
}
// Multiple-precision division, HAC Algorithm 14.20
function bdiv(a,b)
{
var n=a.length-1;
var t=b.length-1;
var nmt=n-t;
// trivial cases; a < b
if(n < t || n==t && (a[n]<b[n] || n>0 && a[n]==b[n] && a[n-1]<b[n-1]))
{
this.q=[0]; this.mod=a;
return this;
}
// trivial cases; q < 4
if(n==t && toppart(a,t,2)/toppart(b,t,2) <4)
{
var x=a.concat();
var qq=0;
var xx;
for(;;)
{
xx=bsub(x,b);
if(xx.length==0) break;
x=xx; qq++;
}
this.q=[qq]; this.mod=x;
return this;
}
// normalize
var shift2=Math.floor(Math.log(b[t])/log2)+1;
var shift=bs-shift2;
var x=a.concat();
var y=b.concat();
if(shift)
{
for(i=t; i>0; i--) y[i]=((y[i]<<shift) & bm) | (y[i-1] >> shift2);
y[0]=(y[0]<<shift) & bm;
if(x[n] & ((bm <<shift2) & bm))
{
x[++n]=0; nmt++;
}
for(i=n; i>0; i--) x[i]=((x[i]<<shift) & bm) | (x[i-1] >> shift2);
x[0]=(x[0]<<shift) & bm;
}
var i, j, x2;
var q=zeros(nmt+1);
var y2=zeros(nmt).concat(y);
for(;;)
{
x2=bsub(x,y2);
if(x2.length==0) break;
q[nmt]++;
x=x2;
}
var yt=y[t], top=toppart(y,t,2)
for(i=n; i>t; i--)
{
var m=i-t-1;
if(i >= x.length) q[m]=1;
else if(x[i] == yt) q[m]=bm;
else q[m]=Math.floor(toppart(x,i,2)/yt);
var topx=toppart(x,i,3);
while(q[m] * top > topx) q[m]--;
//x-=q[m]*y*b^m
y2=y2.slice(1);
x2=bsub(x,bmul([q[m]],y2));
if(x2.length==0)
{
q[m]--;
x2=bsub(x,bmul([q[m]],y2));
}
x=x2;
}
// de-normalize
if(shift)
{
for(i=0; i<x.length-1; i++) x[i]=(x[i]>>shift) | ((x[i+1] << shift2) & bm);
x[x.length-1]>>=shift;
}
this.q = zclip(q);
this.mod = zclip(x);
return this;
}
function simplemod(i,m) // returns the mod where m < 2^bd
{
var c=0, v;
for(var n=i.length-1; n>=0; n--)
{
v=i[n];
c=((v >> bd) + (c<<bd)) % m;
c=((v & bdm) + (c<<bd)) % m;
}
return c;
}
function bmod(p,m)
{
if(m.length==1)
{
if(p.length==1) return [p[0] % m[0]];
if(m[0] < bdm) return [simplemod(p,m[0])];
}
var r=bdiv(p,m);
return r.mod;
}
// Barrett's modular reduction, HAC Algorithm 14.42
function bmod2(x,m,mu)
{
var xl=x.length - (m.length << 1);
if(xl > 0) return bmod2(x.slice(0,xl).concat(bmod2(x.slice(xl),m,mu)),m,mu);
var ml1=m.length+1, ml2=m.length-1,rr;
//var q1=x.slice(ml2)
//var q2=bmul(q1,mu)
var q3=bmul(x.slice(ml2),mu).slice(ml1);
var r1=x.slice(0,ml1);
var r2=bmul(q3,m).slice(0,ml1);
var r=bsub(r1,r2);
if(r.length==0)
{
r1[ml1]=1;
r=bsub(r1,r2);
}
for(var n=0;;n++)
{
rr=bsub(r,m);
if(rr.length==0) break;
r=rr;
if(n>=3) return bmod2(r,m,mu);
}
return r;
}
// Modular exponentiation, HAC Algorithm 14.79
function bexpmod(g,e,m)
{
var a = g.concat();
var l = e.length-1;
var n = nbits(e[l])-2;
for(; l >= 0; l--)
{
for(; n >= 0; n-=1)
{
a=bmod(bsqr(a),m);
if(e[l] & (1<<n)) a=bmod(bmul(a,g),m);
}
n = bs-1;
}
return a;
}
// Modular exponentiation using Barrett reduction
function bmodexp(g,e,m)
{
var a=g.concat();
var l=e.length-1;
var n=m.length*2;
var mu=zeros(n+1);
mu[n]=1;
mu=bdiv(mu,m).q;
n = nbits(e[l])-2;
for(; l >= 0; l--)
{
for(; n >= 0; n-=1)
{
a=bmod2(bsqr(a),m, mu);
if(e[l] & (1<<n)) a=bmod2(bmul(a,g),m, mu);
}
n = bs-1;
}
return a;
}
// -----------------------------------------------------
// Compute s**e mod m for RSA public key operation
function RSAencrypt(s, e, m) { return bexpmod(s,e,m); }
// Compute m**d mod p*q for RSA private key operations.
function RSAdecrypt(m, d, p, q, u)
{
var xp = bmodexp(bmod(m,p), bmod(d,bsub(p,[1])), p);
var xq = bmodexp(bmod(m,q), bmod(d,bsub(q,[1])), q);
var t=bsub(xq,xp);
if(t.length==0)
{
t=bsub(xp,xq);
t=bmod(bmul(t, u), q);
t=bsub(q,t);
}
else
{
t=bmod(bmul(t, u), q);
}
return badd(bmul(t,p), xp);
}
// -----------------------------------------------------------------
// conversion functions: num array <-> multi precision integer (mpi)
// mpi: 2 octets with length in bits + octets in big endian order
function mpi2b(s)
{
var bn=1, r=[0], rn=0, sb=256;
var c, sn=s.length;
if(sn < 2)
{
alert('string too short, not a MPI');
return 0;
}
var len=(sn-2)*8;
var bits=s.charCodeAt(0)*256+s.charCodeAt(1);
if(bits > len || bits < len-8)
{
alert('not a MPI, bits='+bits+",len="+len);
return 0;
}
for(var n=0; n<len; n++)
{
if((sb<<=1) > 255)
{
sb=1; c=s.charCodeAt(--sn);
}
if(bn > bm)
{
bn=1;
r[++rn]=0;
}
if(c & sb) r[rn]|=bn;
bn<<=1;
}
return r;
}
function b2mpi(b)
{
var bn=1, bc=0, r=[0], rb=1, rn=0;
var bits=b.length*bs;
var n, rr='';
for(n=0; n<bits; n++)
{
if(b[bc] & bn) r[rn]|=rb;
if((rb<<=1) > 255)
{
rb=1; r[++rn]=0;
}
if((bn<<=1) > bm)
{
bn=1; bc++;
}
}
while(rn && r[rn]==0) rn--;
bn=256;
for(bits=8; bits>0; bits--) if(r[rn] & (bn>>=1)) break;
bits+=rn*8;
rr+=String.fromCharCode(bits/256)+String.fromCharCode(bits%256);
if(bits) for(n=rn; n>=0; n--) rr+=String.fromCharCode(r[n]);
return rr;
}