diff --git a/slides/analytical_solutions.md b/slides/analytical_solutions.md
index bb52484..e2897d7 100644
--- a/slides/analytical_solutions.md
+++ b/slides/analytical_solutions.md
@@ -51,6 +51,8 @@ $$
## Short wave wavenumber (cont.)
+
+* But, phase-averaged $\widetilde k/k$ *should* be 1 if the crests are conserved.
diff --git a/slides/governing_equations.md b/slides/governing_equations.md
index 831e4ad..c501bba 100644
--- a/slides/governing_equations.md
+++ b/slides/governing_equations.md
@@ -36,17 +36,15 @@ $$
$$
\eta = a_L \cos\psi
$$
-
$$
U = a_L \omega_L e^{\varepsilon_L \cos\psi} \cos\psi
$$
-
$$
W = a_L \omega_L e^{\varepsilon_L \cos\psi} \sin\psi
$$
* Assume no vertical shear; Stewart and Joy (1974) would be straightforward here
- but not sure whether it's applicable.
+ but perhaps not applicable.
diff --git a/slides/numerical_solutions.md b/slides/numerical_solutions.md
index 6b7c420..1219172 100644
--- a/slides/numerical_solutions.md
+++ b/slides/numerical_solutions.md
@@ -20,6 +20,7 @@ $$
- Space differencing: 2$^{nd}$ order centered
- Time integration: 4$^{th}$ order Runge-Kutta
- 100 grid points in phase with periodic boundary conditions
+ - $k_L = 1$, $k_s = 10$, $\varepsilon_L = 0.1$
@@ -29,7 +30,7 @@ $$
* Initial conditions seem to be very important
* Peureux et al. (2021) found:
- - Stable if initialized with the L-H&S solution for $\widetilde k$
+ - Stable solution if initialized with the L-H&S solution for $\widetilde k$
- Unstable growth if initialized uniformly
- _"...sudden appearance of a long wave perturbation in the middle of a homogeneous
short wave field."_
@@ -43,7 +44,6 @@ short wave field."_