diff --git a/slides/analytical_solutions.md b/slides/analytical_solutions.md index bb52484..e2897d7 100644 --- a/slides/analytical_solutions.md +++ b/slides/analytical_solutions.md @@ -51,6 +51,8 @@ $$ ## Short wave wavenumber (cont.) + +* But, phase-averaged $\widetilde k/k$ *should* be 1 if the crests are conserved. diff --git a/slides/governing_equations.md b/slides/governing_equations.md index 831e4ad..c501bba 100644 --- a/slides/governing_equations.md +++ b/slides/governing_equations.md @@ -36,17 +36,15 @@ $$ $$ \eta = a_L \cos\psi $$ - $$ U = a_L \omega_L e^{\varepsilon_L \cos\psi} \cos\psi $$ - $$ W = a_L \omega_L e^{\varepsilon_L \cos\psi} \sin\psi $$ * Assume no vertical shear; Stewart and Joy (1974) would be straightforward here - but not sure whether it's applicable. + but perhaps not applicable. diff --git a/slides/numerical_solutions.md b/slides/numerical_solutions.md index 6b7c420..1219172 100644 --- a/slides/numerical_solutions.md +++ b/slides/numerical_solutions.md @@ -20,6 +20,7 @@ $$ - Space differencing: 2$^{nd}$ order centered - Time integration: 4$^{th}$ order Runge-Kutta - 100 grid points in phase with periodic boundary conditions + - $k_L = 1$, $k_s = 10$, $\varepsilon_L = 0.1$ @@ -29,7 +30,7 @@ $$ * Initial conditions seem to be very important * Peureux et al. (2021) found: - - Stable if initialized with the L-H&S solution for $\widetilde k$ + - Stable solution if initialized with the L-H&S solution for $\widetilde k$ - Unstable growth if initialized uniformly - _"...sudden appearance of a long wave perturbation in the middle of a homogeneous short wave field."_ @@ -43,7 +44,6 @@ short wave field."_