-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
96 lines (87 loc) · 4.13 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
<style>
#localVideo {
width: 640px;
}
#cropped video {
width: 320px;
}
</style>
<script src="https://cdn.jsdelivr.net/npm/@mediapipe/face_detection/face_detection.js" crossorigin="anonymous"></script>
<div>This is a demo using MediaStreamTrack Insertable Streams (a.k.a. Breakout Box) to detect faces (using the <a href="https://github.com/google/mediapipe">MediaPipe library</a>) and then crop them out.
It allows splitting up a in-person meeting with multiple people in the same room into separate cropped streams similar to what is described <a href="https://blog.zoom.us/preparing-workspaces-for-hybrid-workforce-new-zoom-rooms-updates-2/">here</a>.
</div>
<div id="notsupported">This demo requires MediaStreamTrack Insertable Streams which requires experimental web platform features to be enabled in chrome://flags. It also needs OffscreenCanvas.</div>
<video id="localVideo" autoplay playsinline></video>
<br>
<div id="cropped">
<video id="crop0" autoplay playsinline></video>
<video id="crop1" autoplay playsinline></video>
</div>
<script>
const canvas = new OffscreenCanvas(1, 1);
const ctx = canvas.getContext('2d', {desynchronized: true});
let faces;
const width = 1280;
const height = 720;
const boxWidth = 640;
const boxHeight = 360;
canvas.width = boxWidth;
canvas.height = boxHeight;
function transform(frame, controller, index) {
// Cropping is a bit too complex. See https://github.com/w3c/webcodecs/issues/281
if (faces && faces.detections[index]) {
//console.log('DETECTED', faces.detections.length, faces.detections, frame);
const box = faces.detections[index].boundingBox;
ctx.drawImage(frame,
Math.min(Math.max(Math.floor(box.xCenter * frame.codedWidth) - boxWidth / 2, 0), frame.codedWidth - boxWidth),
Math.min(Math.max(Math.floor(box.yCenter * frame.codedHeight) - boxHeight / 2, 0), frame.codedHeight - boxHeight),
boxWidth, boxHeight,
0, 0, boxWidth, boxHeight);
const newFrame = new VideoFrame(canvas);
controller.enqueue(newFrame);
}
frame.close();
}
const faceDetection = new FaceDetection({locateFile: (file) => {
return `https://cdn.jsdelivr.net/npm/@mediapipe/[email protected]/${file}`;
}});
faceDetection.setOptions({
model: 'short',
minDetectionConfidence: 0.5,
});
faceDetection.onResults(results => {
console.log('update results', results);
// For a real "product" one would have to track the different boxes and their
// movement to prevent jumps.
faces = results;
});
if (!(typeof MediaStreamTrackProcessor === 'undefined' || typeof MediaStreamTrackGenerator === 'undefined')) {
document.getElementById('notsupported').style.display = 'none';
navigator.mediaDevices.getUserMedia({video: {width, height}}).then(async (stream) => {
localVideo.srcObject = stream;
// Update face detection every two ѕeconds.
setInterval(() => {
faceDetection.send({image: document.getElementById('localVideo')});
}, 2000);
const [track] = stream.getTracks();
const generator0 = new MediaStreamTrackGenerator({kind: 'video'});
generator0.addEventListener('mute', () => console.log('first generator muted'));
generator0.addEventListener('unmute', () => console.log('first generator unmuted'));
const generator1 = new MediaStreamTrackGenerator({kind: 'video'});
generator1.addEventListener('mute', () => console.log('second generator muted'));
generator1.addEventListener('unmute', () => console.log('second generator unmuted'));
crop0.srcObject = new MediaStream([generator0]);
crop1.srcObject = new MediaStream([generator1]);
const processor0 = new MediaStreamTrackProcessor({track});
processor0.readable.pipeThrough(new TransformStream({
transform: (frame, controller) => transform(frame, controller, 0)
})).pipeTo(generator0.writable);
const processor1 = new MediaStreamTrackProcessor({track});
processor1.readable.pipeThrough(new TransformStream({
transform: (frame, controller) => transform(frame, controller, 1)
})).pipeTo(generator1.writable);
});
}
</script>
</body>
</html>