-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
72 lines (59 loc) · 2.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright (c) 2024 Binbin Zhang([email protected])
# This code is based on the QWen2 from
# https://github.com/QwenLM/Qwen2/blob/main/examples/sft/finetune.py
import pathlib
from dataclasses import dataclass, field
import transformers
from transformers import AutoTokenizer, Trainer
from dataset import DataArguments, SpeechDataset
from speech_llm import init_model, ModelArguments
@dataclass
class TrainingArguments(transformers.TrainingArguments):
optim: str = field(default="adafactor")
model_max_length: int = field(
default=8192,
metadata={"help": "Maximum sequence length"},
)
def main():
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments))
(
model_args,
data_args,
training_args,
) = parser.parse_args_into_dataclasses()
model = init_model(model_args)
model.freeze_llm()
model.freeze_encoder()
if training_args.gradient_checkpointing:
model.enable_input_require_grads()
tokenizer = AutoTokenizer.from_pretrained(
model_args.llm_model_name_or_path,
model_max_length=training_args.model_max_length,
padding_side="right",
)
if 'llama' in model_args.llm_model_name_or_path:
tokenizer.pad_token = '<|finetune_right_pad_id|>'
print("Loading data...")
train_dataset = SpeechDataset(data_args.data_path,
tokenizer=tokenizer,
max_len=training_args.model_max_length)
if data_args.eval_data_path:
eval_dataset = SpeechDataset(data_args.eval_data_path,
tokenizer=tokenizer,
max_len=training_args.model_max_length)
else:
eval_dataset = None
# Start trainer
trainer = Trainer(model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
if __name__ == "__main__":
main()