forked from hybridgroup/gocv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
objdetect.go
285 lines (247 loc) · 9.07 KB
/
objdetect.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
package gocv
/*
#include <stdlib.h>
#include "objdetect.h"
*/
import "C"
import (
"image"
"unsafe"
)
// CascadeClassifier is a cascade classifier class for object detection.
//
// For further details, please see:
// http://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html
//
type CascadeClassifier struct {
p C.CascadeClassifier
}
// NewCascadeClassifier returns a new CascadeClassifier.
func NewCascadeClassifier() CascadeClassifier {
return CascadeClassifier{p: C.CascadeClassifier_New()}
}
// Close deletes the CascadeClassifier's pointer.
func (c *CascadeClassifier) Close() error {
C.CascadeClassifier_Close(c.p)
c.p = nil
return nil
}
// Load cascade classifier from a file.
//
// For further details, please see:
// http://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html#a1a5884c8cc749422f9eb77c2471958bc
//
func (c *CascadeClassifier) Load(name string) bool {
cName := C.CString(name)
defer C.free(unsafe.Pointer(cName))
return C.CascadeClassifier_Load(c.p, cName) != 0
}
// DetectMultiScale detects objects of different sizes in the input Mat image.
// The detected objects are returned as a slice of image.Rectangle structs.
//
// For further details, please see:
// http://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html#aaf8181cb63968136476ec4204ffca498
//
func (c *CascadeClassifier) DetectMultiScale(img Mat) []image.Rectangle {
ret := C.CascadeClassifier_DetectMultiScale(c.p, img.p)
defer C.Rects_Close(ret)
return toRectangles(ret)
}
// DetectMultiScaleWithParams calls DetectMultiScale but allows setting parameters
// to values other than just the defaults.
//
// For further details, please see:
// http://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html#aaf8181cb63968136476ec4204ffca498
//
func (c *CascadeClassifier) DetectMultiScaleWithParams(img Mat, scale float64,
minNeighbors, flags int, minSize, maxSize image.Point) []image.Rectangle {
minSz := C.struct_Size{
width: C.int(minSize.X),
height: C.int(minSize.Y),
}
maxSz := C.struct_Size{
width: C.int(maxSize.X),
height: C.int(maxSize.Y),
}
ret := C.CascadeClassifier_DetectMultiScaleWithParams(c.p, img.p, C.double(scale),
C.int(minNeighbors), C.int(flags), minSz, maxSz)
defer C.Rects_Close(ret)
return toRectangles(ret)
}
// HOGDescriptor is a Histogram Of Gradiants (HOG) for object detection.
//
// For further details, please see:
// https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a723b95b709cfd3f95cf9e616de988fc8
//
type HOGDescriptor struct {
p C.HOGDescriptor
}
// NewHOGDescriptor returns a new HOGDescriptor.
func NewHOGDescriptor() HOGDescriptor {
return HOGDescriptor{p: C.HOGDescriptor_New()}
}
// Close deletes the HOGDescriptor's pointer.
func (h *HOGDescriptor) Close() error {
C.HOGDescriptor_Close(h.p)
h.p = nil
return nil
}
// DetectMultiScale detects objects in the input Mat image.
// The detected objects are returned as a slice of image.Rectangle structs.
//
// For further details, please see:
// https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a660e5cd036fd5ddf0f5767b352acd948
//
func (h *HOGDescriptor) DetectMultiScale(img Mat) []image.Rectangle {
ret := C.HOGDescriptor_DetectMultiScale(h.p, img.p)
defer C.Rects_Close(ret)
return toRectangles(ret)
}
// DetectMultiScaleWithParams calls DetectMultiScale but allows setting parameters
// to values other than just the defaults.
//
// For further details, please see:
// https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a660e5cd036fd5ddf0f5767b352acd948
//
func (h *HOGDescriptor) DetectMultiScaleWithParams(img Mat, hitThresh float64,
winStride, padding image.Point, scale, finalThreshold float64, useMeanshiftGrouping bool) []image.Rectangle {
wSz := C.struct_Size{
width: C.int(winStride.X),
height: C.int(winStride.Y),
}
pSz := C.struct_Size{
width: C.int(padding.X),
height: C.int(padding.Y),
}
ret := C.HOGDescriptor_DetectMultiScaleWithParams(h.p, img.p, C.double(hitThresh),
wSz, pSz, C.double(scale), C.double(finalThreshold), C.bool(useMeanshiftGrouping))
defer C.Rects_Close(ret)
return toRectangles(ret)
}
// HOGDefaultPeopleDetector returns a new Mat with the HOG DefaultPeopleDetector.
//
// For further details, please see:
// https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a660e5cd036fd5ddf0f5767b352acd948
//
func HOGDefaultPeopleDetector() Mat {
return newMat(C.HOG_GetDefaultPeopleDetector())
}
// SetSVMDetector sets the data for the HOGDescriptor.
//
// For further details, please see:
// https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a09e354ad701f56f9c550dc0385dc36f1
//
func (h *HOGDescriptor) SetSVMDetector(det Mat) error {
C.HOGDescriptor_SetSVMDetector(h.p, det.p)
return nil
}
// GroupRectangles groups the object candidate rectangles.
//
// For further details, please see:
// https://docs.opencv.org/master/d5/d54/group__objdetect.html#ga3dba897ade8aa8227edda66508e16ab9
//
func GroupRectangles(rects []image.Rectangle, groupThreshold int, eps float64) []image.Rectangle {
cRectArray := make([]C.struct_Rect, len(rects))
for i, r := range rects {
cRect := C.struct_Rect{
x: C.int(r.Min.X),
y: C.int(r.Min.Y),
width: C.int(r.Size().X),
height: C.int(r.Size().Y),
}
cRectArray[i] = cRect
}
cRects := C.struct_Rects{
rects: (*C.Rect)(&cRectArray[0]),
length: C.int(len(rects)),
}
ret := C.GroupRectangles(cRects, C.int(groupThreshold), C.double(eps))
return toRectangles(ret)
}
// QRCodeDetector groups the object candidate rectangles.
//
// For further details, please see:
// https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html
//
type QRCodeDetector struct {
p C.QRCodeDetector
}
// newQRCodeDetector returns a new QRCodeDetector from a C QRCodeDetector
func newQRCodeDetector(p C.QRCodeDetector) QRCodeDetector {
return QRCodeDetector{p: p}
}
func NewQRCodeDetector() QRCodeDetector {
return newQRCodeDetector(C.QRCodeDetector_New())
}
func (a *QRCodeDetector) Close() error {
C.QRCodeDetector_Close(a.p)
a.p = nil
return nil
}
// DetectAndDecode Both detects and decodes QR code.
//
// Returns true as long as some QR code was detected even in case where the decoding failed
// For further details, please see:
// https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#a7290bd6a5d59b14a37979c3a14fbf394
//
func (a *QRCodeDetector) DetectAndDecode(input Mat, points *Mat, straight_qrcode *Mat) string {
goResult := C.GoString(C.QRCodeDetector_DetectAndDecode(a.p, input.p, points.p, straight_qrcode.p))
return string(goResult)
}
// Detect detects QR code in image and returns the quadrangle containing the code.
//
// For further details, please see:
// https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#a64373f7d877d27473f64fe04bb57d22b
//
func (a *QRCodeDetector) Detect(input Mat, points *Mat) bool {
result := C.QRCodeDetector_Detect(a.p, input.p, points.p)
return bool(result)
}
// Decode decodes QR code in image once it's found by the detect() method. Returns UTF8-encoded output string or empty string if the code cannot be decoded.
//
// For further details, please see:
// https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#a4172c2eb4825c844fb1b0ae67202d329
//
func (a *QRCodeDetector) Decode(input Mat, points Mat, straight_qrcode *Mat) string {
goResult := C.GoString(C.QRCodeDetector_DetectAndDecode(a.p, input.p, points.p, straight_qrcode.p))
return string(goResult)
}
// Detects QR codes in image and finds of the quadrangles containing the codes.
//
// Each quadrangle would be returned as a row in the `points` Mat and each point is a Vecf.
// Returns true if QR code was detected
// For usage please see TestQRCodeDetector
// For further details, please see:
// https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#aaf2b6b2115b8e8fbc9acf3a8f68872b6
func (a *QRCodeDetector) DetectMulti(input Mat, points *Mat) bool {
result := C.QRCodeDetector_DetectMulti(a.p, input.p, points.p)
return bool(result)
}
// Detects QR codes in image and finds of the quadrangles containing the codes and decode the decode the QRCodes to strings.
//
// Each quadrangle would be returned as a row in the `points` Mat and each point is a Vecf.
// Returns true as long as some QR code was detected even in case where the decoding failed
// For usage please see TestQRCodeDetector
// For further details, please see:
//https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#a188b63ffa17922b2c65d8a0ab7b70775
func (a *QRCodeDetector) DetectAndDecodeMulti(input Mat, decoded *[]string, points *Mat, qrCodes *[]Mat) bool {
cDecoded := C.CStrings{}
defer C.CStrings_Close(cDecoded)
cQrCodes := C.struct_Mats{}
defer C.Mats_Close(cQrCodes)
success := C.QRCodeDetector_DetectAndDecodeMulti(a.p, input.p, &cDecoded, points.p, &cQrCodes)
if !success {
return bool(success)
}
tmpCodes := make([]Mat, cQrCodes.length)
for i := C.int(0); i < cQrCodes.length; i++ {
tmpCodes[i].p = C.Mats_get(cQrCodes, i)
}
for _, qr := range tmpCodes {
*qrCodes = append(*qrCodes, qr)
}
for _, s := range toGoStrings(cDecoded) {
*decoded = append(*decoded, s)
}
return bool(success)
}