-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
133 lines (104 loc) · 4.16 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import torchvision
import torchvision.transforms as transforms
from torch.nn import functional as F
from torch.nn.modules import loss
import time
data_path = './data/'
batch_size = 128
num_workers = 8
print_freq = 39
test_freq = 39
# copied from utils
class AverageMeter(object):
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n = 1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(logits, target):
_, pred = logits.topk(k = 1, dim = 1)
pred = pred[ : , 0]
correct = pred.eq(target).float().sum().mul_(100.0 / batch_size)
return correct
def dataset():
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding = 4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean = [0.4914, 0.4822, 0.4465], std = [0.2023, 0.1994, 0.2010])
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean = [0.4914, 0.4822, 0.4465], std = [0.2023, 0.1994, 0.2010])
])
train_set = torchvision.datasets.CIFAR10(root = data_path, train = True, \
transform = transform_train, download = True)
test_set = torchvision.datasets.CIFAR10(root = data_path, train = False, \
transform = transform_test, download = True)
train_loader = torch.utils.data.DataLoader(train_set, batch_size = batch_size, shuffle = True, \
num_workers = num_workers, drop_last = True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size = batch_size, shuffle = False, \
num_workers = num_workers, drop_last = True)
return train_loader, test_loader
def train(model, train_loader, criterion, optimizer, epoch):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
model.train()
end = time.time()
for i, (images, target) in enumerate(train_loader):
images = images.cuda()
target = target.cuda()
# compute output
logits = model(images)
loss = criterion(logits, target)
# measure accuracy and record loss
prec1 = accuracy(logits.data, target)
n = images.size(0)
losses.update(loss.data.item(), n)
top1.update(prec1.item(), n)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
if ((i + 1) % print_freq) == 0:
batch_time.update(time.time() - end)
end = time.time()
print('Epoch {0}: [{1}/{2}]\t'
'Time {batch_time.val:.4f}\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(epoch, i + 1, len(train_loader), \
batch_time = batch_time, loss = losses, top1 = top1), flush = True)
def validate(model, test_loader, epoch):
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
for images, target in test_loader:
images = images.cuda()
target = target.cuda()
# compute output
logits = model(images)
# record loss and accuracy
prec1 = accuracy(logits.data, target)
n = images.size(0)
top1.update(prec1.item(), n)
print(' * Prec@1 {top1.avg:.3f}'.format(top1 = top1))
return top1.avg
'''
class DistributionLoss(loss._Loss):
def forward(self, model_output, real_output):
model_output_log_prob = F.log_softmax(model_output, dim = 1)
real_output_soft = F.softmax(real_output, dim = 1)
del model_output, real_output
real_output_soft = real_output_soft.unsqueeze(1)
model_output_log_prob = model_output_log_prob.unsqueeze(2)
cross_entropy_loss = -torch.bmm(real_output_soft, model_output_log_prob)
cross_entropy_loss = cross_entropy_loss.mean()
return cross_entropy_loss
'''