-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp.py
executable file
·294 lines (275 loc) · 13.9 KB
/
exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import tqdm
import time
import datetime
import random
import numpy as np
from document_reader import *
from os import listdir
from os.path import isfile, join
from EventDataset import EventDataset
import sys
from sklearn.metrics import precision_recall_fscore_support, classification_report, accuracy_score, f1_score, confusion_matrix
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import Dataset, DataLoader
from metric import metric, CM_metric
from transformers import RobertaModel
import os
import os.path
from os import path
import json
from json import JSONEncoder
import notify
from notify_message import *
from notify_smtp import *
from util import *
class NumpyArrayEncoder(JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return JSONEncoder.default(self, obj)
class exp:
def __init__(self, cuda, model, epochs, learning_rate, train_dataloader, valid_dataloader_MATRES, test_dataloader_MATRES, valid_dataloader_HIEVE, test_dataloader_HIEVE, finetune, dataset, MATRES_best_PATH, HiEve_best_PATH, load_model_path, model_name = None, roberta_size = "roberta-base"):
self.cuda = cuda
self.model = model
self.dataset = dataset
self.epochs = epochs
self.learning_rate = learning_rate
self.finetune = finetune
self.train_dataloader = train_dataloader
self.valid_dataloader_MATRES = valid_dataloader_MATRES
self.test_dataloader_MATRES = test_dataloader_MATRES
self.valid_dataloader_HIEVE = valid_dataloader_HIEVE
self.test_dataloader_HIEVE = test_dataloader_HIEVE
### fine-tune roberta or not ###
# if finetune is False, we use fixed roberta embeddings before bilstm and mlp
self.roberta_size = roberta_size
if not self.finetune:
self.RoBERTaModel = RobertaModel.from_pretrained(self.roberta_size).to(self.cuda)
if self.roberta_size == 'roberta-base':
self.roberta_dim = 768
else:
self.roberta_dim = 1024
self.MATRES_best_micro_F1 = -0.000001
self.MATRES_best_cm = []
self.MATRES_best_PATH = MATRES_best_PATH
self.HiEve_best_F1 = -0.000001
self.HiEve_best_prfs = []
self.HiEve_best_PATH = HiEve_best_PATH
self.load_model_path = load_model_path
self.model_name = model_name
self.best_epoch = 0
self.file = open("./rst_file/" + model_name + ".rst", "w")
def my_func(self, x_sent):
my_list = []
for sent in x_sent:
my_list.append(self.RoBERTaModel(sent.unsqueeze(0))[0].view(-1, self.roberta_dim))
return torch.stack(my_list).to(self.cuda)
def train(self):
total_t0 = time.time()
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate, amsgrad=True) # AMSGrad
for epoch_i in range(0, self.epochs):
# ========================================
# Training
# ========================================
# Perform one full pass over the training set.
print("")
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, self.epochs))
print('Training...')
# Measure how long the training epoch takes.
t0 = time.time()
self.model.train()
self.total_train_loss = 0.0
for step, batch in enumerate(self.train_dataloader):
# Progress update every 40 batches.
if step % 40 == 0 and not step == 0:
# Calculate elapsed time in minutes.
elapsed = format_time(time.time() - t0)
# Report progress.
print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(self.train_dataloader), elapsed))
x_sent = batch[3].to(self.cuda)
#print(x_sent)
y_sent = batch[4].to(self.cuda)
z_sent = batch[5].to(self.cuda)
x_position = batch[6].to(self.cuda)
y_position = batch[7].to(self.cuda)
z_position = batch[8].to(self.cuda)
xy = batch[12].to(self.cuda)
yz = batch[13].to(self.cuda)
xz = batch[14].to(self.cuda)
flag = batch[15].to(self.cuda)
if self.finetune:
alpha_logits, beta_logits, gamma_logits, loss = self.model(x_sent, y_sent, z_sent, x_position, y_position, z_position, xy, yz, xz, flag, loss_out = True)
else:
with torch.no_grad():
x_sent_e = self.my_func(x_sent)
y_sent_e = self.my_func(y_sent)
z_sent_e = self.my_func(z_sent)
alpha_logits, beta_logits, gamma_logits, loss = self.model(x_sent_e, y_sent_e, z_sent_e, x_position, y_position, z_position, xy = xy, yz = yz, xz = xz, flag = flag, loss_out = True)
self.total_train_loss += loss.item()
loss.backward()
self.optimizer.step()
# Measure how long this epoch took.
training_time = format_time(time.time() - t0)
print("")
print(" Total training loss: {0:.2f}".format(self.total_train_loss))
print(" Training epoch took: {:}".format(training_time))
if self.dataset in ["HiEve", "MATRES"]:
flag = self.evaluate(self.dataset)
else:
flag = self.evaluate("HiEve")
flag = self.evaluate("MATRES")
if flag == 1:
self.best_epoch = epoch_i
print("")
print("Training complete!")
print("Total training took {:} (h:mm:ss)".format(format_time(time.time()-total_t0)))
if self.dataset in ["MATRES", "Joint"]:
print(" MATRES best micro F1: {0:.3f}".format(self.MATRES_best_micro_F1))
print(" MATRES best confusion matrix:\n", self.MATRES_best_cm)
print(" Dev best:", file = self.file)
print(" MATRES best micro F1: {0:.3f}".format(self.MATRES_best_micro_F1), file = self.file)
print(" MATRES best confusion matrix:", file = self.file)
print(self.MATRES_best_cm, file = self.file)
if self.dataset in ["HiEve", "Joint"]:
print(" HiEve best F1_PC_CP_avg: {0:.3f}".format(self.HiEve_best_F1))
print(" HiEve best precision_recall_fscore_support:\n", self.HiEve_best_prfs)
print(" Dev best:", file = self.file)
print(" HiEve best F1_PC_CP_avg: {0:.3f}".format(self.HiEve_best_F1), file = self.file)
print(" HiEve best precision_recall_fscore_support:", file = self.file)
print(self.HiEve_best_prfs, file = self.file)
return self.MATRES_best_micro_F1, self.HiEve_best_F1
def evaluate(self, eval_data, test = False, predict = False):
# ========================================
# Validation / Test
# ========================================
# After the completion of each training epoch, measure our performance on
# our validation set.
# Also applicable to test set.
t0 = time.time()
if test:
if self.load_model_path:
self.model = torch.load(self.load_model_path + self.model_name + ".pt")
elif eval_data == "HiEve":
self.model = torch.load(self.HiEve_best_PATH)
else: # MATRES
self.model = torch.load(self.MATRES_best_PATH)
self.model.to(self.cuda)
print("")
print("loaded " + eval_data + " best model:" + self.model_name + ".pt")
if predict == False:
print("(from epoch " + str(self.best_epoch) + " )")
print("Running Evaluation on " + eval_data + " Test Set...")
if eval_data == "MATRES":
dataloader = self.test_dataloader_MATRES
else:
dataloader = self.test_dataloader_HIEVE
else:
# Evaluation
print("")
print("Running Evaluation on Validation Set...")
if eval_data == "MATRES":
dataloader = self.valid_dataloader_MATRES
else:
dataloader = self.valid_dataloader_HIEVE
self.model.eval()
y_pred = []
y_gold = []
y_logits = np.array([[0.0, 1.0, 2.0, 3.0]])
softmax = nn.Softmax(dim=1)
# Evaluate data for one epoch
for batch in dataloader:
x_sent = batch[3].to(self.cuda)
y_sent = batch[4].to(self.cuda)
z_sent = batch[5].to(self.cuda)
x_position = batch[6].to(self.cuda)
y_position = batch[7].to(self.cuda)
z_position = batch[8].to(self.cuda)
xy = batch[12].to(self.cuda)
yz = batch[13].to(self.cuda)
xz = batch[14].to(self.cuda)
flag = batch[15].to(self.cuda)
with torch.no_grad():
if self.finetune:
alpha_logits, beta_logits, gamma_logits = self.model(x_sent, y_sent, z_sent, x_position, y_position, z_position, xy, yz, xz, flag, loss_out = None)
else:
with torch.no_grad():
x_sent_e = self.my_func(x_sent)
y_sent_e = self.my_func(y_sent)
z_sent_e = self.my_func(z_sent)
alpha_logits, beta_logits, gamma_logits = self.model(x_sent_e, y_sent_e, z_sent_e, x_position, y_position, z_position, xy = xy, yz = yz, xz = xz, flag = flag, loss_out = None)
if self.dataset == "Joint":
assert list(alpha_logits.size())[1] == 8
if eval_data == "MATRES":
alpha_logits = torch.narrow(alpha_logits, 1, 4, 4)
else:
alpha_logits = torch.narrow(alpha_logits, 1, 0, 4)
else:
assert list(alpha_logits.size())[1] == 4
# Move logits and labels to CPU
label_ids = xy.to('cpu').numpy()
y_predict = torch.max(alpha_logits, 1).indices.cpu().numpy()
y_pred.extend(y_predict)
y_gold.extend(label_ids)
y_logits = np.append(y_logits, softmax(alpha_logits).cpu().numpy(), 0)
# Measure how long the validation run took.
validation_time = format_time(time.time() - t0)
print("Eval took: {:}".format(validation_time))
if predict:
with open(predict, 'w') as outfile:
if eval_data == "MATRES":
numpyData = {"labels": "0 -- Before; 1 -- After; 2 -- Equal; 3 -- Vague", "array": y_logits}
else:
numpyData = {"labels": "0 -- Parent-Child; 1 -- Child-Parent; 2 -- Coref; 3 -- NoRel", "array": y_logits}
json.dump(numpyData, outfile, cls=NumpyArrayEncoder)
msg = message(subject=eval_data + " Prediction Notice",
text=self.dataset + "/" + self.model_name + " Predicted " + str(y_logits.shape[0] - 1) + " instances. (Current Path: " + os.getcwd() + ")")
send(msg) # and send it
return 0
if eval_data == "MATRES":
Acc, P, R, F1, CM = metric(y_gold, y_pred)
print(" P: {0:.3f}".format(P))
print(" R: {0:.3f}".format(R))
print(" F1: {0:.3f}".format(F1))
if test:
print("Test result:", file = self.file)
print(" P: {0:.3f}".format(P), file = self.file)
print(" R: {0:.3f}".format(R), file = self.file)
print(" F1: {0:.3f}".format(F1), file = self.file)
print(" Confusion Matrix", file = self.file)
print(CM, file = self.file)
msg = message(subject=eval_data + " Test Notice",
text = self.dataset + "/" + self.model_name + " Test results:\n" + " P: {0:.3f}\n".format(P) + " R: {0:.3f}\n".format(R) + " F1: {0:.3f}".format(F1) + " (Current Path: " + os.getcwd() + ")")
send(msg) # and send it
if not test:
if F1 > self.MATRES_best_micro_F1 or path.exists(self.MATRES_best_PATH) == False:
self.MATRES_best_micro_F1 = F1
self.MATRES_best_cm = CM
### save model parameters to .pt file ###
torch.save(self.model, self.MATRES_best_PATH)
return 1
if eval_data == "HiEve":
# Report the final accuracy for this validation run.
cr = classification_report(y_gold, y_pred, output_dict = True)
rst = classification_report(y_gold, y_pred)
F1_PC = cr['0']['f1-score']
F1_CP = cr['1']['f1-score']
F1_coref = cr['2']['f1-score']
F1_NoRel = cr['3']['f1-score']
F1_PC_CP_avg = (F1_PC + F1_CP) / 2.0
print(rst)
print(" F1_PC_CP_avg: {0:.3f}".format(F1_PC_CP_avg))
if test:
print(" rst:", file = self.file)
print(rst, file = self.file)
print(" F1_PC_CP_avg: {0:.3f}".format(F1_PC_CP_avg), file = self.file)
msg = message(subject=eval_data + " Test Notice", text = self.dataset + "/" + self.model_name + " Test results:\n" + " F1_PC_CP_avg: {0:.3f}".format(F1_PC_CP_avg) + " (Current Path: " + os.getcwd() + ")")
send(msg) # and send it
if not test:
if F1_PC_CP_avg > self.HiEve_best_F1 or path.exists(self.HiEve_best_PATH) == False:
self.HiEve_best_F1 = F1_PC_CP_avg
self.HiEve_best_prfs = rst
torch.save(self.model, self.HiEve_best_PATH)
return 1
return 0