This repository has been archived by the owner on Sep 13, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_network.py
98 lines (83 loc) · 4.48 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Luke
from pybrain.datasets import SupervisedDataSet
from pybrain.tools.shortcuts import buildNetwork
from pybrain.supervised.trainers import BackpropTrainer
from pybrain.structure.modules import TanhLayer
from normalizer import normalize
from normalizer import denormalize
from price_parsing import *
from neural_network_functions import trainNetwork
from neural_network_functions import graphOutput
def graphNN(ticker, date, epochs, verbose):
"""
The function builds a data set of stock prices, normalizes that data set, builds a linked data set to
train the neural network, generates a neural network, trains the network, makes predictions, analyzes the
predictions against testing data to generate statistics for comparison, and uses the statistics to
generate graphs as a png file.
:param ticker: the stock sticker to train and predict on
:param date: the date to split the data on to create training and testing
:param epochs: the number of times to train the network
:param verbose: boolean value for verbose output
:return tomorrowPrice: the price prediction for tomorrow
:return totalTime: the total time in seconds it took to train the network on the data set
:return averageTimePerEpoch: the average time per training run
:return averagePercentError:the average percent error of the predictions and the testing data
:return minPercentError:the minimum percent error of the predictions and the testing data
"""
# request stock prices and split by the specified date to create training and testing data sets
if verbose: print 'Requesting data...'
data = getStockPrices(ticker, frequency="daily", update=True)
trainData, testData = splitByDate(data, date)
xTrain, yTrain = preprocessStocks(trainData)
xTest, yTest = preprocessStocks(testData)
# allocate space for predictions and error values
fucturePredictions = []
trainingPredictions = []
percentError = []
if verbose: print 'complete.'
if verbose: print 'Normalizing data...'
# normalize the values to a percentage of their max values to increase network training speed
xTrain, yTrain, xTest, yTest, priceScaleFactor, timeScaleFactor = normalize(xTrain, yTrain, xTest, yTest)
if verbose: print 'complete.'
if verbose: print 'Building dataset...'
# build a linked data set to allow for training and error calculation
ds = SupervisedDataSet(1,1)
for i in range(0, len(xTrain)):
ds.appendLinked(xTrain[i], yTrain[i])
if verbose: print 'complete.'
if verbose: print 'Buidling network...'
rnn = buildNetwork(1, 3, 3, 3, 3, 3, 3, 3, 3, 1, bias=True, recurrent=True, hiddenclass=TanhLayer)
if verbose: print 'complete'
if verbose: print 'Training network...'
trainer = BackpropTrainer(rnn, ds, learningrate=0.01)
totalTime, averageTimePerEpoch, trainerErrorValues, epochTimes = trainNetwork(trainer, epochs, verbose)
if verbose: print 'Training network 100.0% complete.'
if verbose: print 'Predicting...'
# prime the network
for i in xTrain:
rnn.activate(i)
# make predictions with network on the training data to show general shape of approximated function
for i in xTrain:
trainingPredictions.append(rnn.activate(i))
# make predictions with the network on the testing data to validate the accuracy of the network
for i in xTest:
fucturePredictions.append(rnn.activate(i))
# predict tomorrow's price
tomorrowPrice = rnn.activate(xTest[len(xTest) - 1] + 1) * priceScaleFactor
if verbose: print 'complete.'
if verbose: print 'Generating graphs...'
# denormalize
xTrain, yTrain, xTest, yTest, fucturePredictions, trainingPredictions = denormalize(xTrain, yTrain, xTest, yTest, fucturePredictions, trainingPredictions, priceScaleFactor, timeScaleFactor)
# calculate percent error
for i in range(0, len(yTest)):
percentError.append((abs((yTest[i] - fucturePredictions[i])/yTest[i]) *100))
# calculates statistics on the analysis of the network
sumPercentError = sum(percentError)
averagePercentError = sumPercentError / len(percentError)
numDataPoints = len(xTrain) + len(xTest)
minPercentError = min(percentError)
# generate the graphs and save them to the working directory
graphOutput(xTrain, yTrain, xTest, yTest, fucturePredictions, trainingPredictions, ticker)
if verbose: print 'complete.'
# returns
return tomorrowPrice, numDataPoints, totalTime, averageTimePerEpoch, averagePercentError, minPercentError