-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathinfer.py
25 lines (22 loc) · 804 Bytes
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from model import *
import config as cfg
import time
import os
loss,train_decode_result,pred_decode_result=build_network(is_training=False)
var_list = tf.trainable_variables()
g_list = tf.global_variables()
bn_moving_vars = [g for g in g_list if 'moving_mean' in g.name]
bn_moving_vars += [g for g in g_list if 'moving_variance' in g.name]
var_list += bn_moving_vars
saver = tf.train.Saver(var_list=var_list,max_to_keep=5)
sess = tf.Session()
ckpt = tf.train.latest_checkpoint(cfg.CKPT_DIR)
if ckpt:
saver.restore(sess,ckpt)
print('restore from the checkpoint{0}'.format(ckpt))
else:
print('failed to load ckpt')
val_img,_=cfg.read_data(cfg.val_dir)
val_predict = sess.run(pred_decode_result,feed_dict={image: val_img})
predit = cfg.int2label(np.argmax(val_predict, axis=2))
print(predit)