forked from skaphan/stmmap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegalloc.cpp
520 lines (380 loc) · 15.8 KB
/
segalloc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/*
segalloc.cpp
This is the multi-threading compatible implementation of a low-level memory
allocator for memory segments. It knows nothing of the STM package or any of
its objects. It is used by stmalloc.c.
Copyright 2009 Shel Kaphan
This file is part of stmmap.
stmmap is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
stmmap is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with stmmap. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AVLtree.hpp"
#include "segalloc.h"
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
typedef char voidish;
class segalloc_node : public AVLtreeNode {
public:
size_t size;
size_t size_mask;
// virtual int compareToKey(void *key);
// virtual void* nodeKey();
segalloc_node(size_t _size) : AVLtreeNode() {
size = _size;
};
};
static void set_size_mask(segalloc_node *n) {
segalloc_node *l, *r;
AVLtreeNode *a = n;
n->size_mask = n->size;
l = (segalloc_node *)a->left.get();
r = (segalloc_node *)a->right.get();
if (l)
n->size_mask |= l->size_mask;
if (r)
n->size_mask |= r->size_mask;
}
static void set_size_mask_r(segalloc_node *a) {
segalloc_node *p;
set_size_mask(a);
p = (segalloc_node *)a->parent.get();
if (p)
set_size_mask_r(p);
}
#if 0
void* segalloc_node::nodeKey() {
return this;
}
int segalloc_node::compareToKey(void *key) {
if (this == key)
return 0;
else if ((voidish*)this < (voidish*)key)
return -1;
else {
return 1;
}
}
#endif
static void *nodekey(void *n) {
return n;
}
static int nodecmp(void* a, void* b) {
if (a==b)
return 0;
else if ((voidish*)a < (voidish*)b)
return -1;
else {
return 1;
}
}
// here size is a number, and we want the smallest power of two that is at least as large as size
//
static size_t least_power_of_2_ge (size_t size) {
size_t remaining_bits, lowbit;
remaining_bits = size;
while ((lowbit = (remaining_bits & -remaining_bits)) != remaining_bits)
remaining_bits ^= lowbit;
if (size != remaining_bits)
remaining_bits <<= 1; // This is now the smallest power of 2 >= the size requested.
return remaining_bits;
}
size_t seg_block_size_for (size_t size) {
static size_t t = 0;
if (t == 0) t = least_power_of_2_ge(sizeof(segalloc_node));
if (size <= t)
return t;
else
return least_power_of_2_ge(size);
}
// here x is a bitmask of powers of two, and size is a number with a single bit (a power of two)
// find the least power of 2 in x that is at least as large as size.
//
static size_t least_power_of_2_gt_in (size_t x, size_t size) {
x &= -size; // just keep the bits to the left of the size bit.
return x & -x; // finds the low order bit of what's left.
}
static size_t greatest_power_of_2_le (size_t size) {
size_t remaining_bits, low_bit;
remaining_bits = size;
while ((low_bit = (remaining_bits & -remaining_bits)) != remaining_bits)
remaining_bits ^= low_bit;
return low_bit;
}
static void split_node(segalloc_node* t, size_t size, offset_ptr<segalloc_node>* free_list_addr) {
segalloc_node *new_node;
while (t->size > size) {
t->size >>= 1;
set_size_mask_r(t);
new_node = (segalloc_node*)((voidish*)t + t->size);
new(new_node) segalloc_node (t->size); // initialize node in place
#if 0
if (AVLsearch(free_list_addr->get(), new_node, nodecmp, nodekey) != NULL) {
fprintf(stderr, "Already in tree!\n");
}
#endif
AVLaddToTree(new_node, (offset_ptr<AVLtreeNode>*)free_list_addr, nodecmp, nodekey);
}
}
// Find the best-fitting block on the free-list for a block of size "size" below.
// Size must be a power of two.
//
static segalloc_node* segalloc_search(AVLtreeNode* t, size_t size, offset_ptr<segalloc_node>* free_list_addr) {
segalloc_node* result = NULL;
size_t tsize;
if (t == NULL)
return NULL;
if ((tsize = ((segalloc_node*)t)->size) == size)
return (segalloc_node*)t;
size_t left_smallest = t->left? least_power_of_2_gt_in (((segalloc_node*)t->left.get())->size_mask, size) : 0;
size_t right_smallest = t->right? least_power_of_2_gt_in (((segalloc_node*)t->right.get())->size_mask, size) : 0;
if (size > tsize) {
// current node won't do -- just decide between left & right branches
if (left_smallest == 0) {
if (right_smallest == 0) {
result = NULL;
} else {
result = segalloc_search(t->right.get(), size, free_list_addr);
}
} else {
if (right_smallest == 0) {
result = segalloc_search(t->left.get(), size, free_list_addr);
} else {
if (left_smallest < right_smallest)
result = segalloc_search(t->left.get(), size, free_list_addr);
else
result = segalloc_search(t->right.get(), size, free_list_addr);
}
}
} else {
// current node is usable.
if (left_smallest && left_smallest < tsize) {
if (right_smallest && right_smallest < tsize) {
// both left and right branches usable and better than current node
if (left_smallest > right_smallest)
result = segalloc_search(t->right.get(), size, free_list_addr);
else
result = segalloc_search(t->left.get(), size, free_list_addr);
} else {
// only left branch usable
result = segalloc_search(t->left.get(), size, free_list_addr);
}
} else {
if (right_smallest && right_smallest < tsize) {
// only right branch usable
result = segalloc_search(t->right.get(), size, free_list_addr);
} else {
// neither left or right branches are better than current node
result = (segalloc_node*)t;
// check here to split the node, since it is too big.
split_node((segalloc_node*)t, size, free_list_addr);
}
}
}
return result;
}
void *seg_alloc(size_t size, void* free_list_addr) {
offset_ptr<segalloc_node> *ptr_to_free_list_ptr = (offset_ptr<segalloc_node>*)free_list_addr;
AVLtreeNode* result;
size_t real_size;
result = segalloc_search(ptr_to_free_list_ptr->get(), seg_block_size_for(size), ptr_to_free_list_ptr);
if (result) {
real_size = ((segalloc_node *)result)->size;
AVLremoveFromTree(result, (offset_ptr<AVLtreeNode>*) free_list_addr);
memset(result, 0, real_size);
}
return ((void*)result);
}
static size_t find_potential_buddy(off_t offset, size_t buddy_size) {
size_t buddy_lowbits = ~(-buddy_size);
if (offset & buddy_lowbits)
return -1;
else
return (offset ^ buddy_size);
}
static void merge_with_buddies(void *base_va, segalloc_node *freed_object,
offset_ptr<segalloc_node>* free_list_addr) {
off_t offset, buddy_offset;
segalloc_node *buddy_block;
// while (freed_object->size <= MAX_BLOCK_SIZE) {
while (1) {
offset = (voidish*)freed_object - (voidish*)base_va;
if ((buddy_offset = find_potential_buddy(offset, freed_object->size)) == -1)
break;
offset_ptr<segalloc_node> *ptr_to_free_list_ptr = (offset_ptr<segalloc_node>*)free_list_addr;
if ((buddy_block = (segalloc_node *)AVLsearch(ptr_to_free_list_ptr->get(),
(voidish*)base_va + buddy_offset, nodecmp, nodekey)) != NULL &&
buddy_block->size == freed_object->size) {
size_t fsize = freed_object->size;
if (buddy_block > freed_object) {
AVLremoveFromTree(buddy_block, (offset_ptr<AVLtreeNode>*)free_list_addr);
} else {
AVLremoveFromTree(freed_object, (offset_ptr<AVLtreeNode>*)free_list_addr);
freed_object = buddy_block;
}
freed_object->size = fsize << 1;
set_size_mask_r(freed_object);
} else {
// there is no buddy.
return;
}
}
}
static int nodes_overlap_cmp(void* aa, void* bb) {
voidish *a = (voidish*)aa;
voidish *b = (voidish*)bb;
if ((a <= b && b < a + ((segalloc_node*)a)->size) ||
(b <= a && a < b + ((segalloc_node*)b)->size))
return 0;
else if (a<b)
return -1;
else {
return 1;
}
}
void seg_free(void *object_va, size_t size, void *base_va, void *free_list_addr) {
size_t block_size;
block_size = seg_block_size_for(size);
offset_ptr<segalloc_node> *ptr_to_free_list_ptr = (offset_ptr<segalloc_node>*)free_list_addr;
if (AVLsearch(ptr_to_free_list_ptr->get(), object_va, nodes_overlap_cmp, nodekey) != NULL) {
fprintf(stderr, "seg_free: node 0x%lx already in free list!\n", (unsigned long)object_va);
return;
}
new(object_va) segalloc_node(block_size); // initialize node in place
AVLaddToTree((AVLtreeNode*)object_va, (offset_ptr<AVLtreeNode>*)free_list_addr, nodecmp, nodekey);
merge_with_buddies(base_va, (segalloc_node*)object_va, ptr_to_free_list_ptr);
}
void *seg_alloc_init(void *base_va, size_t size, int mode) {
AVLuserHook = (void (*)(AVLtreeNode*))set_size_mask;
if (mode == 1) {
int first_time = 1;
void *va = base_va;
size_t allocated_size;
size_t remaining_size = size;
size_t min_block_size;
offset_ptr<AVLtreeNode> tmp_free_list = NULL;
min_block_size = least_power_of_2_ge(sizeof(segalloc_node));
// printf("min_block_size = %d, sizeof(segalloc_node) = %d\n", min_block_size, sizeof(segalloc_node));
while (remaining_size >= min_block_size) {
allocated_size = greatest_power_of_2_le(remaining_size);
new(va) segalloc_node(allocated_size); // initialize node in place
if (first_time) {
AVLaddToTree((segalloc_node*)va, &tmp_free_list, nodecmp, nodekey);
if (seg_alloc(min_block_size, &tmp_free_list) != base_va) {
fprintf(stderr, "seg_alloc_init: initial allocation != base_va\n");
exit(-1);
}
*(offset_ptr<AVLtreeNode> *)base_va = tmp_free_list; // move the tree root to the base of the segment
first_time = 0;
} else {
AVLaddToTree((segalloc_node*)va, (offset_ptr<AVLtreeNode>*)base_va, nodecmp, nodekey);
}
va = (voidish*)va + allocated_size;
remaining_size -= allocated_size;
}
}
return base_va; // this is now the address of the offset_ptr that points to the free list.
}
static int verify_tree_integrity(AVLtreeNode *tt, AVLtreeNode* parent, void* lower_bound, void* upper_bound) {
segalloc_node *t;
size_t size_mask;
int ldepth, rdepth, depth, bal;
int result = 0;
t = (segalloc_node *)tt;
if (lower_bound && ((void*)t < lower_bound)) {
fprintf(stderr, "overlapping nodes: node %lx < lower bound %lx\n",
(unsigned long)t, (unsigned long)lower_bound);
result++;
}
if (upper_bound && (((voidish*)t + t->size) > upper_bound)) {
fprintf(stderr, "overlapping nodes: node %lx[%lx] > upper bound %lx\n",
(unsigned long)t, t->size, (unsigned long)upper_bound);
result++;
}
if (tt->parent.get() != parent) {
fprintf(stderr, "bad parent: node %lx, parent is %lx, should be %lx\n",
(unsigned long)tt, (unsigned long)tt->parent.get(), (unsigned long)parent);
result++;
}
size_mask = t->size | (tt->right? ((segalloc_node*)tt->right.get())->size_mask : 0)
| (tt->left? ((segalloc_node*)tt->left.get())->size_mask : 0);
if (size_mask != t->size_mask) {
fprintf(stderr, "Node %lx, size mask is %lx, should be %lx. size=%lx, lmask=%lx, rmask=%lx\n",
(unsigned long)t, t->size_mask, size_mask, t->size,
tt->left? ((segalloc_node*)tt->left.get())->size_mask:0,
tt->right? ((segalloc_node*)tt->right.get())->size_mask:0);
result++;
}
ldepth = tt->left? tt->left->depth : 0;
rdepth = tt->right? tt->right->depth : 0;
depth = (((ldepth > rdepth)? ldepth : rdepth) + 1);
if (depth != tt->depth) {
fprintf(stderr, "depth is %d, should be %d\n", tt->depth, depth);
result++;
}
bal = ldepth - rdepth;
if (bal < -1 || bal > 1) {
fprintf(stderr, "tree out of balance: %d\n", bal);
result++;
}
if (tt->left && tt->left.get() >= tt) {
fprintf(stderr, "left branch %lx not to left of its parent %lx\n",
(unsigned long)tt->left.get(), (unsigned long)tt);
result++;
}
if (tt->right && tt->right.get() <= tt) {
fprintf(stderr, "right branch %lx not to right of its parent %lx\n",
(unsigned long)tt->right.get(), (unsigned long)tt);
result++;
}
if (tt->left)
result += verify_tree_integrity(tt->left.get(), tt, lower_bound, tt);
if (tt->right)
result += verify_tree_integrity(tt->right.get(), tt, (voidish*)t + t->size, upper_bound);
return result;
}
int seg_verify_tree_integrity(segalloc_node *free_list) {
return verify_tree_integrity(free_list, NULL, NULL, NULL);
}
static void __overlap_check(segalloc_node *t, void* base, size_t size, void* lower_bound, void* upper_bound) {
AVLtreeNode *tt = t;
if (lower_bound && (base < lower_bound)) {
fprintf(stderr, "overlapping nodes\n");
}
if (upper_bound && (((voidish*)base + size) > upper_bound)) {
fprintf(stderr, "overlapping nodes\n");
}
if (base <= (void*)t) {
if (tt->left)
__overlap_check((segalloc_node*)tt->left.get(), base, size, lower_bound, tt);
}
if (base >= (void*)t) {
if (tt->right)
__overlap_check((segalloc_node*)tt->right.get(), base, size, (voidish*)t + t->size, upper_bound);
}
}
void overlap_check(segalloc_node *t, void *base, size_t size) {
__overlap_check(t, base, size, NULL, NULL);
}
void seg_print_free_list(segalloc_node *t) {
AVLtreeNode *a = t;
if (a->left)
seg_print_free_list((segalloc_node*)a->left.get());
printf("[ %lx, %lx ] %lx\n", (unsigned long)t, (unsigned long)t+t->size, (unsigned long)t->size);
if (a->right)
seg_print_free_list((segalloc_node*)a->right.get());
}
struct segalloc_node* seg_free_list_from_free_list_addr(void *free_list_addr)
{
offset_ptr<segalloc_node> *ptr_to_free_list_ptr = (offset_ptr<segalloc_node>*)free_list_addr;
return ptr_to_free_list_ptr->get();
}