-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinl.rs
285 lines (247 loc) · 11 KB
/
inl.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
use std::cell::RefCell;
use std::collections::{HashMap, HashSet};
use std::ops::Deref;
use crate::lang::func::{BlockGen, BlockRef, FnAttrib, FnRef};
use crate::lang::inst::Inst;
use crate::lang::Program;
use crate::lang::util::ExtRc;
use crate::lang::value::{SymbolGen, SymbolRef, Typed, Value};
use crate::pass::Pass;
pub struct Inliner {
/// Functions to be inlined
tgt: HashSet<FnRef>,
/// Map blocks in callee to new blocks in caller
blk_map: HashMap<BlockRef, BlockRef>,
/// Map symbols in callee to values in caller
sym_map: HashMap<SymbolRef, SymbolRef>,
/// Stack of nested inlined functions
/// It may happen that a inlined function calls another function that could be inlined. This
/// allows for multiple levels of inline expansion.
nested: Vec<FnRef>,
/// Stack of exit blocks
/// During inline expansion, exit blocks of some inlined functions may change. This record
/// the latest exit blocks of inlined functions. This stack is always one element fewer than
/// function stack.
exit: Vec<Vec<BlockRef>>,
/// Block generator for current function
blk_gen: Option<BlockGen>,
/// Symbol generator for current function
sym_gen: SymbolGen,
}
impl Pass for Inliner {
fn run(&mut self, pro: &mut Program) {
// Make sure all functions is in SSA form
// Actually, inlining does not rely on SSA property. However, an SSA function may call
// a non-SSA function and the SSA property no longer holds. On the other hand, a non-SSA
// function may call an SSA function and introduce phi instruction for itself. It will
// cause a problem if that non-SSA function is later converted to SSA form.
// The safe approach is to ensure all functions are in SSA form.
pro.func.iter().for_each(|f| f.assert_ssa());
// Find target for inlining
self.tgt = pro.func.iter()
.filter(|f| Self::can_inl(f)).cloned().collect();
// Process blocks
let tgt: Vec<_> = pro.func.iter()
.filter(|f| !self.tgt.contains(f)).cloned().collect();
tgt.iter().for_each(|f| {
f.assert_ssa();
// Push this function to nested stack
self.nested.push(f.clone());
// Initialize block generator for this function
self.blk_gen = Some(BlockGen::new(f.as_ref(), ""));
self.sym_gen = SymbolGen::new(f.scope.clone(), "t");
// Process blocks in this function
f.iter_dom().for_each(|b| self.proc_blk(f, b));
// Rebuild dominator tree
f.build_dom();
// Clear records for this function
self.blk_map.clear();
self.sym_map.clear();
self.nested.clear();
});
}
}
impl Inliner {
pub fn new() -> Inliner {
Inliner {
tgt: Default::default(),
blk_map: Default::default(),
sym_map: Default::default(),
nested: vec![],
exit: vec![],
blk_gen: None,
sym_gen: SymbolGen::new(Default::default(), ""),
}
}
fn can_inl(f: &FnRef) -> bool { f.has_attrib(FnAttrib::Inline) }
fn proc_blk(&mut self, caller: &FnRef, mut blk: BlockRef) {
loop {
// Find the first call instruction
let pos = blk.inst.borrow().iter().position(|inst| match inst.as_ref() {
// Inline this function if it could be inlined, and it is not on the nested stack.
// If this function is on the nested stack, it is a recursive call. Inlining
// recursive call will lead to infinite recursion in inliner.
Inst::Call { func, arg: _, dst: _ }
if self.tgt.contains(func) && !self.nested.contains(func) => true,
_ => false
});
let pos = if let Some(pos) = pos { pos } else { return; };
// Inline the called function
let call = blk.inst.borrow()[pos].clone();
let (callee, arg, dst) = if let Inst::Call { func, arg, dst } = call.as_ref() {
(func, arg, dst)
} else { unreachable!() };
let (ent, exit) = self.inl_fn(caller, callee, arg);
// Split the block separated by call instruction
let blk_split = self.blk_gen.as_mut().unwrap().rename(&blk);
blk_split.succ.replace(blk.succ.borrow().clone());
let inst_split = blk.inst.borrow_mut().split_off(pos);
blk_split.inst.replace(inst_split);
// Insert blocks of callee into caller block
blk.succ.replace(vec![ent.clone()]); // connect to entry block
blk.push_back(ExtRc::new(Inst::Jmp { tgt: RefCell::new(ent.clone()) }));
ent.pred.replace(vec![blk.clone()]);
blk_split.pred.replace(exit.iter().map(|exit| { // connect to exit blocks
exit.succ.replace(vec![blk_split.clone()]); // connect to the split block
exit
}).cloned().collect());
// Collect return result
blk_split.inst.borrow_mut().pop_front(); // remove the call instruction
dst.as_ref().map(|dst| {
// Create phi source operands
let phi_src: Vec<_> = exit.clone().into_iter().map(|exit| {
let val = exit.inst.borrow().back().unwrap().src()[0].clone();
let ret_sym = self.sym_gen.gen(&val.borrow().get_type());
exit.insert_before_ctrl(ExtRc::new(Inst::Mov {
src: val,
dst: RefCell::new(ret_sym.clone()),
}));
(RefCell::new(exit), RefCell::new(Value::Var(ret_sym)))
}).collect();
// Assign returned result to destination
let ref dst_ty = dst.borrow().get_type();
let collect_sym = self.sym_gen.gen(dst_ty);
blk_split.push_front(ExtRc::new(Inst::Mov {
src: RefCell::new(Value::Var(collect_sym.clone())),
dst: dst.clone(),
}));
blk_split.push_front(ExtRc::new(Inst::Phi { // add phi in front of split block
src: phi_src,
dst: RefCell::new(collect_sym),
}));
});
// Connect exit blocks to split block of caller function
exit.iter().for_each(|exit| {
*exit.inst.borrow_mut().back_mut().unwrap() = ExtRc::new(Inst::Jmp {
tgt: RefCell::new(blk_split.clone())
})
});
// Update exit blocks of current function
let replace = |exit: &mut BlockRef| if exit == &blk { *exit = blk_split.clone() };
match self.exit.last_mut() {
Some(exit) => exit.iter_mut().for_each(replace),
None => caller.exit.borrow_mut().iter_mut().for_each(replace)
}
// Visit the rest instructions
blk = blk_split
}
}
/// Inline function with given arguments. Return entry block and exit blocks of inlined
/// function.
fn inl_fn(&mut self, caller: &FnRef, callee: &FnRef, arg: &Vec<RefCell<Value>>)
-> (BlockRef, Vec<BlockRef>)
{
// Push this function to nested stack
self.nested.push(callee.clone());
// Create corresponding blocks of callee
callee.iter_dom().for_each(|ref b| {
self.blk_map.insert(b.clone(), self.blk_gen.as_mut().unwrap().rename(b));
});
self.blk_map.iter().for_each(|(prev, new)| {
new.pred.replace(prev.pred.borrow().iter()
.map(|p| self.blk_map[p].clone()).collect()
);
new.succ.replace(prev.succ.borrow().iter()
.map(|s| self.blk_map[s].clone()).collect()
);
});
// Push current version of function exits to stack
self.exit.push(callee.exit.borrow().iter().map(|b| self.blk_map[b].clone()).collect());
// Map symbols
callee.scope.collect().into_iter().for_each(|ref s| {
self.sym_map.insert(s.clone(), self.sym_gen.rename(s));
});
// Transfer instructions to new block
self.blk_map.clone().iter().for_each(|(prev, new)| self.trans_inst(caller, prev, new));
// Assign arguments to parameters
let ent = self.blk_map[callee.ent.borrow().deref()].clone();
callee.param.iter().zip(arg).for_each(|(p, a)| {
ent.push_front(ExtRc::new(Inst::Mov {
src: a.clone(),
dst: RefCell::new(self.sym_map[p.borrow().deref()].clone()),
}));
});
// Pop this function from nested stack
self.nested.pop();
// Return entry and exit blocks of inlined function
(ent, self.exit.pop().unwrap())
}
/// Transfer instructions from one block to another. Possibly inline functions in the new block
/// if some instruction calls another function that could be inlined.
fn trans_inst(&mut self, caller: &FnRef, from: &BlockRef, to: &BlockRef) {
// Transfer instructions to new block
to.inst.replace(from.inst.borrow().iter().map(|inst| {
// Clone the original instruction
let inst = ExtRc::new(inst.as_ref().clone());
// Map symbols
inst.src().iter().for_each(|src| {
src.replace_with(|v| {
match v {
Value::Var(sym) if sym.is_local_var() =>
Value::Var(self.sym_map[&sym].clone()),
_ => v.clone()
}
});
});
inst.dst().map(|dst| {
if dst.borrow().is_global_var() { return; }
let ref sym = dst.borrow().clone();
dst.replace(self.sym_map[sym].clone());
});
// Map blocks
inst.blk().iter().for_each(|blk| {
let ref b = blk.borrow().clone();
blk.replace(self.blk_map[b].clone());
});
inst
}).collect());
// Do nested inline expansion in the new block
self.proc_blk(caller, to.clone());
}
}
#[test]
fn test_inl() {
use crate::irc::lex::Lexer;
use crate::irc::parse::Parser;
use crate::irc::build::Builder;
use crate::lang::print::Printer;
use crate::vm::exec::Machine;
use std::io::stdout;
use std::fs::File;
use std::convert::TryFrom;
use std::io::Read;
use std::borrow::BorrowMut;
let mut file = File::open("test/example.ir").unwrap();
let lexer = Lexer::try_from(&mut file as &mut dyn Read).unwrap();
let parser = Parser::new(lexer);
let tree = parser.parse().unwrap();
let builder = Builder::new(tree);
let mut pro = builder.build().unwrap();
Pass::run(&mut Inliner::new(), &mut pro);
let mut out = stdout();
let mut printer = Printer::new(out.borrow_mut());
printer.print(&pro).unwrap();
let mut mach = Machine::new();
let rcd = mach.run(&mut pro).unwrap();
println!("{:?}", rcd);
}