-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathMCLDNN.py
64 lines (52 loc) · 2.47 KB
/
MCLDNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
from keras.models import Model
from keras.layers import Input,Dense,Conv1D,Dropout,concatenate,Reshape
from keras.layers.convolutional import Conv2D
from keras.layers import CuDNNLSTM
def MCLDNN(weights=None,
input_shape1=[2,128],
input_shape2=[128,1],
classes=11,
**kwargs):
if weights is not None and not (os.path.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), '
'or the path to the weights file to be loaded.')
dr=0.5
input1=Input(input_shape1+[1],name='I/Qchannel')
input2=Input(input_shape2,name='Ichannel')
input3=Input(input_shape2,name='Qchannel')
# Part-A: Multi-channel Inputs and Spatial Characteristics Mapping Section
x1=Conv2D(50,(2,8),padding='same',activation="relu",name="Conv1",kernel_initializer="glorot_uniform")(input1)
x2=Conv1D(50,8,padding='causal',activation="relu",name="Conv2",kernel_initializer="glorot_uniform")(input2)
x2_reshape=Reshape([-1,128,50])(x2)
x3=Conv1D(50,8,padding='causal',activation="relu",name="Conv3",kernel_initializer="glorot_uniform")(input3)
x3_reshape=Reshape([-1,128,50],name="reshap2")(x3)
x=concatenate([x2_reshape,x3_reshape],axis=1,name='Concatenate1')
x=Conv2D(50,(1,8), padding='same',activation="relu",name="Conv4",kernel_initializer="glorot_uniform")(x)
x=concatenate([x1,x],name="Concatenate2")
x=Conv2D(100,(2,5),padding="valid",activation="relu",name="Conv5",kernel_initializer="glorot_uniform")(x)
# Part-B: TRemporal Characteristics Extraction Section
x=Reshape(target_shape=((124,100)))(x)
x=CuDNNLSTM(units=128,return_sequences=True,name="LSTM1")(x)
x=CuDNNLSTM(units=128,name="LSTM2")(x)
#DNN
x=Dense(128,activation="selu",name="FC1")(x)
x=Dropout(dr)(x)
x=Dense(128,activation="selu",name="FC2")(x)
x=Dropout(dr)(x)
x=Dense(classes,activation="softmax",name="Softmax")(x)
model=Model(inputs=[input1,input2,input3],outputs=x)
# Load weights.
if weights is not None:
model.load_weights(weights)
return model
import keras
from keras.optimizers import adam
if __name__ == '__main__':
# for the RaioML2016.10a dataset
model = MCLDNN(classes=11)
# for the RadioML2016.10b dataset
# model = MCLDNN(classes=10)
model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam')
model.summary()