-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdataset2016.py
56 lines (49 loc) · 2.21 KB
/
dataset2016.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"Adapted from the code (https://github.com/leena201818/radioml) contributed by leena201818"
import pickle
import numpy as np
def l2_normalize(x, axis=-1):
y = np.max(np.sum(x ** 2, axis, keepdims=True), axis, keepdims=True)
return x / np.sqrt(y)
def load_data(filename,data):
# RadioML2016.10a: (220000,2,128), mods*snr*1000, total 220000 samples;
# RadioML2016.10b: (1200000,2,128), mods*snr*6000, total 1200000 samples;
Xd =pickle.load(open(filename,'rb'),encoding='iso-8859-1')
mods,snrs = [sorted(list(set([k[j] for k in Xd.keys()]))) for j in [0,1] ]
X = []
lbl = []
train_idx=[]
val_idx=[]
np.random.seed(2016)
a=0
for mod in mods:
for snr in snrs:
X.append(Xd[(mod,snr)])
for i in range(Xd[(mod,snr)].shape[0]):
lbl.append((mod,snr))
if data==0:
train_idx+=list(np.random.choice(range(a*1000,(a+1)*1000), size=600, replace=False))
val_idx+=list(np.random.choice(list(set(range(a*1000,(a+1)*1000))-set(train_idx)), size=200, replace=False))
elif data==1:
train_idx+=list(np.random.choice(range(a*6000,(a+1)*6000), size=3600, replace=False))
val_idx+=list(np.random.choice(list(set(range(a*6000,(a+1)*6000))-set(train_idx)), size=1200, replace=False))
a+=1
X = np.vstack(X)
# Scramble the order between samples
# and get the serial number of training, validation, and test sets
n_examples=X.shape[0]
test_idx=list(set(range(0,n_examples))-set(train_idx)-set(val_idx))
np.random.shuffle(train_idx)
np.random.shuffle(val_idx)
np.random.shuffle(test_idx)
X_train =X[train_idx]
X_val=X[val_idx]
X_test =X[test_idx]
# transfor the label form to one-hot
def to_onehot(yy):
yy1=np.zeros([len(yy), len(mods)])
yy1[np.arange(len(yy)), yy]=1
return yy1
Y_train=to_onehot(list(map(lambda x: mods.index(lbl[x][0]),train_idx)))
Y_val=to_onehot(list(map(lambda x: mods.index(lbl[x][0]),val_idx)))
Y_test=to_onehot(list(map(lambda x: mods.index(lbl[x][0]),test_idx)))
return (mods,snrs,lbl),(X_train,Y_train),(X_val,Y_val),(X_test,Y_test),(train_idx,val_idx,test_idx)