diff --git a/docs/src/api/bayesian_regression.md b/docs/src/api/bayesian_regression.md index 018096c..c9e9ad2 100644 --- a/docs/src/api/bayesian_regression.md +++ b/docs/src/api/bayesian_regression.md @@ -4,34 +4,42 @@ BayesianRegression ``` +## Bayesian Algorithms + +```@docs +BayesianAlgorithm +MCMC +VI +``` + ## Linear Regression ### Linear Regression with User Specific Gaussian Prior ```@docs -fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Gauss, alpha_prior_mean::Float64, beta_prior_mean::Vector{Float64}, sim_size::Int64 = 1000) -fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Gauss, alpha_prior_mean::Float64, alpha_prior_sd::Float64, beta_prior_mean::Vector{Float64}, beta_prior_sd::Vector{Float64}, sim_size::Int64 = 1000) +fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Gauss, alpha_prior_mean::Float64, beta_prior_mean::Vector{Float64}, algorithm::BayesianAlgorithm = MCMC()) +fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Gauss, alpha_prior_mean::Float64, alpha_prior_sd::Float64, beta_prior_mean::Vector{Float64}, beta_prior_sd::Vector{Float64}, algorithm::BayesianAlgorithm = MCMC()) ``` ### Linear Regression with Ridge Prior ```@docs -fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Ridge, h::Float64 = 0.01, sim_size::Int64 = 1000) +fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Ridge, algorithm::BayesianAlgorithm = MCMC(), h::Float64 = 0.01) ``` ### Linear Regression with Laplace Prior ```@docs -fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Laplace, h::Float64 = 0.01, sim_size::Int64 = 1000) +fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Laplace, algorithm::BayesianAlgorithm = MCMC(), h::Float64 = 0.01) ``` ### Linear Regression with Cauchy Prior ```@docs -fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Cauchy, sim_size::Int64 = 1000) +fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_Cauchy, algorithm::BayesianAlgorithm = MCMC()) ``` ### Linear Regression with T-distributed Prior ```@docs -fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_TDist, h::Float64 = 2.0, sim_size::Int64 = 1000) +fit(formula::FormulaTerm, data::DataFrame, modelClass::LinearRegression, prior::Prior_TDist, algorithm::BayesianAlgorithm = MCMC(), h::Float64 = 2.0) ``` ### Linear Regression with Horse Shoe Prior ```@docs -fit(formula::FormulaTerm,data::DataFrame,modelClass::LinearRegression,prior::Prior_HorseShoe,sim_size::Int64 = 1000) +fit(formula::FormulaTerm,data::DataFrame,modelClass::LinearRegression,prior::Prior_HorseShoe,algorithm::BayesianAlgorithm = MCMC()) ``` ## Logistic Regression