-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathM1.py
214 lines (173 loc) · 6.46 KB
/
M1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import numpy as np
import cv2
from pandas import DataFrame
from scipy.spatial.distance import euclidean
from sklearn.cluster import KMeans
import mahotas as mt
import operator
import global_functions as gf
# Look at model 2 comments or report for more detail
def histogram_features(img):
features = []
pp_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
channels = cv2.split(pp_img)
channel_names = ('h', 's', 'v')
for (channel, channel_name) in zip(channels, channel_names):
hist = cv2.calcHist([channel], [0], None, [256], [0, 256])
features.extend(hist.flatten())
return features
def hist_features_database(data_imgs):
db_features = []
for img in data_imgs:
db_features.append(histogram_features(img))
db_hist_df = DataFrame(db_features)
return db_hist_df
def calc_hist_distance(query_img, db_df):
feature_vectors = db_df.values.tolist()
distances = {}
for a in range(len(feature_vectors)):
query_features = histogram_features(query_img)
dist = euclidean(query_features, feature_vectors[a])
distances[a] = dist
return gf.normalise(distances, 20)
def build_filters():
filters = []
kernal_size = 9
for theta in np.arange(0, np.pi, np.pi / 8):
for deg in np.arange(0, 6*np.pi/4, np.pi / 4):
kernal = cv2.getGaborKernel(
(kernal_size, kernal_size), 1.0, theta, deg, 0.5, 0, ktype=cv2.CV_32F)
kernal /= 1.5 * kernal.sum()
filters.append(kernal)
return filters
def convolve_filters(img, filters):
conv = np.zeros_like(img)
for kernal in filters:
filter_img = cv2.filter2D(img, cv2.CV_8UC3, kernal)
np.maximum(conv, filter_img, conv)
return conv
def gabor_features(img):
features = []
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
filters = np.asarray(build_filters())
for a in range(20):
energy = 0
conv = convolve_filters(img, filters[a])
for b in range(100):
for c in range(100):
energy += int(conv[b][c]) * int(conv[b][c])
features.append(energy)
for a in range(20):
mean = 0
conv = convolve_filters(img, filters[a])
for b in range(100):
for c in range(100):
mean += abs(conv[a][b])
features.append(mean)
features = np.array(features)
return features
def gabor_features_database(data_imgs):
db_feat = []
for img in data_imgs:
db_feat.append(gabor_features(img))
db_gabor_df = DataFrame(db_feat)
return db_gabor_df
def calc_gabor_distance(query_img, db_df):
distances = {}
query_feat = gabor_features(query_img)
feature_vector = db_df.values.tolist()
for a in range(len(feature_vector)):
distances[a] = euclidean(query_feat, feature_vector[a])
distances = gf.normalise(distances, 20)
return distances
# Haralick Features
def haralick_features(img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
texture = mt.features.haralick(img)
features = texture.mean(axis=0)
return features
def haralick_features_database(img_db):
features = []
for img in img_db:
feat = haralick_features(img)
features.append(feat)
haralick_df = DataFrame(features)
return haralick_df
def calc_haralick_distance(query_img, db_df):
distances = {}
query_feat = haralick_features(query_img)
haralick_fv = db_df.values.tolist()
for a in range(len(haralick_fv)):
img_feats = haralick_fv[a]
dist = euclidean(query_feat, img_feats)
distances[a] = dist
distances = gf.normalise(distances, 20)
return distances
# Dominant Colour Features
def dom_colour_features(img, colour_num):
dom_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
ratio = dom_img.shape[0]/dom_img.shape[1]
height = int(dom_img.shape[1] * ratio)
dimentions = (50, height)
dom_img = cv2.resize(dom_img, dimentions)
channels = dom_img.reshape((dom_img.shape[0] * dom_img.shape[1], 3))
k = KMeans(n_clusters=colour_num, random_state=31, n_init=10)
k.fit(channels)
clusters = k.cluster_centers_.astype(int)
return clusters.flatten()
def dom_colour_features_database(img_db, colour_num):
features = []
for img in img_db:
feat = dom_colour_features(img, colour_num)
features.append(feat)
dominant_df = DataFrame(features)
return dominant_df
def calc_dominant_distance(query_img, db_df, colour_num):
distances = {}
query_feat = dom_colour_features(query_img, colour_num)
dominant_fv = db_df.values.tolist()
for a in range(len(dominant_fv)):
img_feats = dominant_fv[a]
dist = euclidean(query_feat, img_feats)
distances[a] = dist
distances = gf.normalise(distances, 20)
return distances
# distance metric calculation
def calc_distances_total(hist_dist, gabor_dist, hara_dist, dom_dist, db_length, feat_weights):
total_dist = []
# weight distances
for a in hist_dist:
hist_dist[a] *= feat_weights[0]
gabor_dist[a] *= feat_weights[1]
hara_dist[a] *= feat_weights[2]
dom_dist[a] *= feat_weights[3]
# combine distances
total_dist.append(
hist_dist[a] + gabor_dist[a] + hara_dist[a] + dom_dist[a])
# sort distances from least to most and maintain img key
dist_final = dict(sorted(dict(zip(np.arange(0, db_length), (np.array(
total_dist)))).items(), key=operator.itemgetter(1)))
return dist_final
def model_compute(query_img, img_data, feat_check, feat_weights):
# initialise empty dict for distances
hist_dist = {b: 0 for b in range(len(img_data))}
gabor_dist = {b: 0 for b in range(len(img_data))}
hara_dist = {b: 0 for b in range(len(img_data))}
dom_dist = {b: 0 for b in range(len(img_data))}
if (feat_check[0]):
hist_dist = calc_hist_distance(
query_img, hist_features_database(img_data))
if (feat_check[1]):
gabor_dist = calc_gabor_distance(
query_img, gabor_features_database(img_data))
if (feat_check[2]):
hara_dist = calc_haralick_distance(
query_img, haralick_features_database(img_data))
if (feat_check[3]):
colour_num = 1
dom_dist = calc_dominant_distance(
query_img, dom_colour_features_database(img_data, colour_num), colour_num)
# calculate distances from query image
final_dist = calc_distances_total(
hist_dist, gabor_dist, hara_dist, dom_dist, len(img_data), feat_weights)
return final_dist