-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2. data_preprocessing_and_feature_engineering.py
449 lines (324 loc) · 16.8 KB
/
2. data_preprocessing_and_feature_engineering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# HOUSE PRICE PREDICTION MODEL
# DATA PREPROCESSING AND FEATURE ENGINEERING
# Import dependencies
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
import warnings
from sklearn.exceptions import ConvergenceWarning
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter("ignore", category=ConvergenceWarning)
pd.pandas.set_option('display.max_columns', None)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
# Load the dataset and gather train and test sets
train = pd.read_csv(r'C:\Users\yakup\PycharmProjects\dsmlbc\datasets\house_prices\train.csv') # train = load_train_house_price_from_db()
test = pd.read_csv(r'C:\Users\yakup\PycharmProjects\dsmlbc\datasets\house_prices\test.csv') # test = load_test_house_price_from_db()
# test = load_test_house_price_from_db()
print (f"Train has {train.shape[0]} rows and {train.shape[1]} columns")
print (f"Test has {test.shape[0]} rows and {test.shape[1]} columns")
train.shape, test.shape
df = pd.concat((train, test)).reset_index(drop=True) # df = train.append(test).reset_index()
df.head()
df.tail()
# General View
df.head()
df.shape
df.info()
df.columns
df.index
df.isnull().values.any()
df.isnull().sum().sort_values(ascending = False).head(15)
# Drop the columns that have many NAN values
df.drop(['PoolQC', 'MiscFeature', 'Alley', 'Fence', 'FireplaceQu'], axis = 1, inplace = True)
# Type transformations
df.info()
# Columns to be transformed
transform_num_to_cat = ['MSSubClass', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'BsmtFullBath',
'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd',
'Fireplaces', 'GarageYrBlt', 'GarageCars', 'YrSold', 'MoSold']
# Apply dtype transformations for the selected columns
for col in transform_num_to_cat:
df[col] = df[col].astype(str)
# Check the types again
df.info()
cat_cols = [col for col in df.columns if df[col].dtypes == 'O']
len(cat_cols)
num_cols = [col for col in df.columns if df[col].dtypes != 'O' and col not in ["Id", 'SalePrice']]
len(num_cols)
# Drop 'Id' column
df.drop('Id', axis= 1, inplace=True)
# Now, we have 55 categorical and 21 numerical columns excluding 'Id' and target.
# Feature Creation
# Create a function to plot histograms
def plot_histogram(variable):
df[variable].hist()
plt.show()
# Create a function to plot boxplots
def plot_boxplot(variable, target, dataframe):
sns.boxplot(x=variable, y=target, data=dataframe)
plt.show()
df.info()
# Now, it is time to create new features to increase our model performance and improve the results
# Above, we transformed year variables from numerical to categorical variables. In order to make calsulations, we need take back the tramsformation.
df['YearBuilt'] = df['YearBuilt'].astype(int)
df['YearRemodAdd'] = df['YearRemodAdd'].astype(int)
df['YrSold'] = df['YrSold'].astype(int)
# df['YrBltAndRemod']= df['YearBuilt']+ df['YearRemodAdd']
# num_cols.append('YrBltAndRemod')
# Create a new feature that shows the age of the building
df["BldgAge"] = (df["YearBuilt"].max() - df["YearBuilt"])
# Show the histogram for 'BldgAge'
plot_histogram('BldgAge')
num_cols.append('BldgAge')
# Create a new feature that shows the age of the building when it was sold
df['BldgSoldAge'] = df['YrSold'] - df['YearBuilt']
# Show the histogram for 'BldgSoldAge'
plot_histogram('BldgSoldAge')
num_cols.append('BldgSoldAge')
cat_cols.remove('YearBuilt')
cat_cols.remove('YrSold')
# Create a new feature that shows how new was the building when it was sold
df['SoNewatSold'] = df['YrSold'] - df['YearRemodAdd']
# Show the histogram for 'SoNewatSold'
plot_histogram('SoNewatSold')
num_cols.append('SoNewatSold')
cat_cols.remove('YearRemodAdd')
# Now, let's look at 'GarageYrBlt' variable. We see there are some nan classes, which means these buildings do not have garage.
df['GarageYrBlt'].describe()
# Even though, we implemented imputaiton for missing values, there are still nan values by 'GarageYrBlt'
df.loc[df['GarageYrBlt'] == 'nan', 'GarageYrBlt'].count() # 159
df.loc[df['GarageYrBlt'] == 'nan', 'GarageYrBlt'] = 0
# In the next step we are going to create a new column called 'HasGarage' that shows if the building has a garage or not.
df['GarageYrBlt'] = df['GarageYrBlt'].astype(float)
# Create a new feature that shows the age of the garage when it was sold
df['GarageAge'] = df['YrSold'] - df['GarageYrBlt']
# # Check for missing values in the new variable
# df['GarageAge'].isnull().sum()
# # Fill missing values with 999
# df[['GarageAge']] = df[['GarageAge']].apply(lambda x: x.fillna(999))
# Show the histogram for 'GarageAge'
plot_histogram('GarageAge')
num_cols.append('GarageAge')
cat_cols.remove('GarageYrBlt')
df.drop('GarageYrBlt', axis = 1, inplace=True)
# Create a feature that shows if the house has a garage or not
df['HasGarage'] = df['GarageArea'].apply(lambda x: 1 if x > 0 else 0)
# Trasnform 'HasGarage' into categorical column
df['HasGarage'] = df['HasGarage'].astype(str)
# Show the correlation with 'GarageArea'
df[['HasGarage', 'GarageArea']].corr()
# Show boxplot to see difference of 'SalePrice' between the buildings with amd without garage.
plot_boxplot('HasGarage', 'SalePrice', df)
cat_cols.append('HasGarage')
# Drop the coluns, that we have used and we do no need anymore
df.drop(['YearBuilt', 'YearRemodAdd', 'YrSold', 'MoSold'], axis = 1, inplace = True)
cat_cols.remove('MoSold')
# Show te distribution of 'PoolArea'
df['PoolArea'].describe()
# Show the non_null values for 'PoolArea'
df.loc[df["PoolArea"]!=0, 'PoolArea']
# Relationship between 'PoolArea' and 'SalePrice'
sns.jointplot(x="PoolArea", y="SalePrice", data=df, kind="reg", truncate=False)
plt.show()
# We see that they are very rare, but there is a meaningful difference between the ones with and without a pool
# So, let's create a feature that shows if the house has a pool or not , and then drop 'PoolArea'
df['HasPool'] = df['PoolArea'].apply(lambda x: 1 if x > 0 else 0)
# Transform 'HasPool' into categorical column
df['HasPool'] = df['HasPool'].astype(str)
# Show boxplot to see difference of 'SalePrice' between the buildings with amd without a pool.
plot_boxplot('HasPool', 'SalePrice', df)
df.drop('PoolArea', axis = 1, inplace = True)
cat_cols.append('HasPool')
num_cols.remove('PoolArea')
# Create a feature that shows if the house has the second floor or not
df['Has2ndFloor'] = df['2ndFlrSF'].apply(lambda x: 1 if x > 0 else 0)
df['Has2ndFloor'] = df['Has2ndFloor'].astype(str)
# Show boxplot to see difference of 'SalePrice' between the buildings with amd without a second floor.
plot_boxplot('Has2ndFloor', 'SalePrice', df)
cat_cols.append('Has2ndFloor')
# Create a feature that shows if the house has a basement or not and make the variable transformation
df['HasBsmt'] = df['TotalBsmtSF'].apply(lambda x: 1 if x > 0 else 0)
df['HasBsmt'] = df['HasBsmt'].astype(str)
# Show boxplot to see difference of 'SalePrice' between the buildings with amd without a second floor.
plot_boxplot('HasBsmt', 'SalePrice', df)
cat_cols.append('HasBsmt')
# Create a feature that shows if the house has a fireplace or not
df['Fireplaces'] = df['Fireplaces'].astype(int)
df['HasFireplace'] = df['Fireplaces'].apply(lambda x: 1 if x > 0 else 0)
df['Fireplaces'] = df['Fireplaces'].astype(str)
df['HasFireplace'] = df['HasFireplace'].astype(str)
# Show boxplot to see difference of 'SalePrice' between the buildings with amd without a second floor.
plot_boxplot('HasFireplace', 'SalePrice', df)
cat_cols.append('HasFireplace')
# Create a feature that shows the total number of bathrooms
# We need to transform the variables to float data type, to be able to make calculations.
for col in ['HalfBath', 'BsmtHalfBath', 'BsmtFullBath', 'FullBath']:
df[col] = df[col].astype(float)
# Create a feature that shows the total number of bathrooms
df["TotBath"] = ((0.5 * df["HalfBath"]) + (0.5 * df["BsmtHalfBath"]) + (df["BsmtFullBath"]) + (df["FullBath"]))
# See the distribution of 'TotBath'
df["TotBath"].describe()
# Relationship between 'TotBath' and 'SalePrice'
sns.jointplot(x="TotBath", y="SalePrice", data=df, kind="reg", truncate=False)
plt.show()
num_cols.append('TotBath')
drop_list_bath = ["FullBath", "HalfBath", "BsmtFullBath", "BsmtHalfBath"]
cat_cols = [col for col in cat_cols if col not in drop_list_bath]
len(cat_cols)
# Drop other bathroom columns
for col in drop_list_bath:
df.drop(col, axis=1, inplace=True)
# Create a new feature that shows if the the surface of the building
df['TotalSF'] = (df['TotalBsmtSF'] + df['1stFlrSF'] + df['2ndFlrSF'])
# Show the correlations
df[['TotalSF', 'TotalBsmtSF', '1stFlrSF','2ndFlrSF']].corr()
# Relationship between 'TotBath' and 'SalePrice'
sns.jointplot(x="TotalSF", y="SalePrice", data=df, kind="reg", truncate=False)
plt.show()
# For now do not drop the columns we used to create a new variable
# # df.drop(['TotalBsmtSF','1stFlrSF','2ndFlrSF'], axis = 1, inplace=True)
num_cols.append('TotalSF')
# # num_cols.remove('TotalBsmtSF')
# # num_cols.remove('1stFlrSF')
# # num_cols.remove('2ndFlrSF')
# Create a feature that shows the total surface of porchs
df["TotPorchSF"] = (df["ScreenPorch"] + df["OpenPorchSF"] + df["EnclosedPorch"] + df["3SsnPorch"] + df["WoodDeckSF"])
# Show the correlations
df[['TotPorchSF', 'ScreenPorch', 'OpenPorchSF','EnclosedPorch', '3SsnPorch', 'WoodDeckSF', 'SalePrice']].corr()
# Relationship between 'TotPorchSF' and 'SalePrice'
sns.jointplot(x="TotPorchSF", y="SalePrice", data=df, kind="reg", truncate=False)
plt.show()
num_cols.append('TotPorchSF')
# Create a feature that shows if the building has masonry area or not
df['MasVnrArea' + 'HasOrNot'] = np.where(df['MasVnrArea'] > 0, 1, 0)
df['MasVnrAreaHasOrNot'] = df['MasVnrAreaHasOrNot'].astype(str)
# Show boxplot to see difference of 'SalePrice' between the buildings with and without a masonry area.
plot_boxplot('MasVnrAreaHasOrNot', 'SalePrice', df)
cat_cols.append('MasVnrAreaHasOrNot')
df.info()
print('Now, we have {} categorical and {} numerical variables'.format(len(cat_cols), len(num_cols)))
# Now, we have 52 categorical and 25 numerical variables
# Outlier Analysis
# Function to calculate outlier thresholds
def outlier_thresholds(dataframe, variable):
quartile1 = dataframe[variable].quantile(0.05)
quartile3 = dataframe[variable].quantile(0.95)
interquantile_range = quartile3 - quartile1
up_limit = quartile3 + 1.5 * interquantile_range
low_limit = quartile1 - 1.5 * interquantile_range
return low_limit, up_limit
# Function to report variables with outliers and return the names of the variables with outliers with a list
def has_outliers(dataframe, num_col_names, plot=False):
variable_names = []
for col in num_col_names:
low_limit, up_limit = outlier_thresholds(dataframe, col)
if dataframe[(dataframe[col] > up_limit) | (dataframe[col] < low_limit)].any(axis=None):
number_of_outliers = dataframe[(dataframe[col] > up_limit) | (dataframe[col] < low_limit)].shape[0]
print(col, ":", number_of_outliers)
variable_names.append(col)
if plot:
sns.boxplot(x=dataframe[col])
plt.show()
return variable_names
has_outliers(df, num_cols)
# Function to reassign up/low limits to the ones above/below up/low limits
def replace_with_thresholds(dataframe, variable):
low_limit, up_limit = outlier_thresholds(dataframe, variable)
dataframe.loc[(dataframe[variable] < low_limit), variable] = low_limit
dataframe.loc[(dataframe[variable] > up_limit), variable] = up_limit
# Function to reassign up/low limits to the ones above/below up/low limits by using apply and lambda method
def replace_with_thresholds_with_lambda(dataframe, variable):
low_limit, up_limit = outlier_thresholds(dataframe, variable)
dataframe[variable] = dataframe[variable].apply(lambda x: up_limit if x > up_limit else (low_limit if x < low_limit else x))
# Assign outliers thresholds values for all the numerical variables
for col in num_cols:
replace_with_thresholds(df, col)
# Check for outliers, again
has_outliers(df, num_cols)
# Missing Values Analysis
# Function to catch missing variables, count them and find ratio (in descending order)
def missing_values_table(dataframe):
variables_with_na = [col for col in dataframe.columns if dataframe[col].isnull().sum() > 0]
n_miss = dataframe[variables_with_na].isnull().sum().sort_values(ascending=False)
ratio = (dataframe[variables_with_na].isnull().sum() / dataframe.shape[0] * 100).sort_values(ascending=False)
missing_df = pd.concat([n_miss, np.round(ratio, 2)], axis=1, keys=['n_miss', 'ratio'])
print(missing_df)
return variables_with_na
missing_values_table(df)
# Numerical variables
# Check for missing values
df[num_cols].isnull().sum()
df[num_cols].isnull().sum().sum() # 517
# Impute median values for missing values for numeral variables
df[num_cols] = df[num_cols].apply(lambda x: x.fillna(x.median()), axis=0)
# Check for missing values, again and control
df[num_cols].isnull().sum()
df[num_cols].isnull().sum().sum() # 0
# Categorical variables
# Check for missing values
df[cat_cols].isnull().sum()
df[cat_cols].isnull().sum().sum() # 1075
# Fill missing values for the buildings with these variables with 0, because they do not have any garage.
for col in ('GarageArea', 'GarageCars'):
df[col] = df[col].fillna(0)
# Some missing values are intentionally left blank, for example: In the Alley feature there are blank values meaning that there are no alley's in that specific house.
missing_val_col = ["GarageType", "GarageFinish", "GarageQual", "GarageCond", 'BsmtQual',
'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'MasVnrType']
# Fill these missing values with 'None'
for i in missing_val_col:
df[i] = df[i].fillna('None')
# Fill other missing values with the most logical and common classes.
# For 'MSZoning' fill the missing values with respect to 'MSSubClass' classes
df['MSZoning'] = df.groupby('MSSubClass')['MSZoning'].transform(lambda x: x.fillna(x.mode()[0]))
# For the following variables fill the missing values with the most common classes/modes
cat_cols_to_fill = ['Functional', 'Utilities', 'Exterior1st', 'Exterior2nd', 'KitchenQual', 'SaleType', 'SaleType', 'Electrical']
for col in cat_cols_to_fill:
df[col] = df[col].fillna(df[col].mode()[0])
# Check for missing values, again control
df[cat_cols].isnull().sum()
df[cat_cols].isnull().sum().sum() # 0
missing_values_table(df)
# Now, we have missing values only for tagrge variable, which we will not fill.
# Label and One Hot Encoding
# Define a function to apply one hot encoding to categorical variables.
def one_hot_encoder(dataframe, categorical_cols, nan_as_category=True):
original_columns = list(dataframe.columns)
dataframe = pd.get_dummies(dataframe, columns=categorical_cols, dummy_na=nan_as_category, drop_first=True)
new_columns = [c for c in dataframe.columns if c not in original_columns]
return dataframe, new_columns
df, new_cols_ohe = one_hot_encoder(df, cat_cols)
df.head()
len(new_cols_ohe)
# Check if there are any duplicate_columns
duplicate_columns = df.columns[df.columns.duplicated()]
df = df.loc[:, ~df.columns.duplicated()]
# # Analyse categorical variables, again.
# cat_summary(df, new_cols_ohe, "SalePrice")
# Standardization
df.head()
# MinMaxScaler
from sklearn.preprocessing import MinMaxScaler
transformer = MinMaxScaler()
df[num_cols] = transformer.fit_transform(df[num_cols]) # default value is between 0 and 1
df[num_cols].describe().T
len(num_cols)
# Check before modeling for missing values and outliers in the dataset
missing_values_table(df)
has_outliers(df, num_cols)
df.isnull().sum().sort_values(ascending=False)
df.isnull().sum().sum()
# Last look at the dataset
df.head()
df.info()
# Pickle the data set after preprocessing and feature engineering to be able avoid repetations.
# At the beginning, we gathered the train and test datasets to implement the same processes for the dataset.
# Now, it is time separate them.
train_df = df[df['SalePrice'].notnull()]
test_df = df[df['SalePrice'].isnull()]
train_df.to_pickle("datasets/house_prices/prepared_data/train_df_.pkl")
test_df.to_pickle("datasets/house_prices/prepared_data/test_df_.pkl")