-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhouse_price_prediction_model.txt
56 lines (42 loc) · 1.6 KB
/
house_price_prediction_model.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# HOUSE PRICE PREDICTION MODEL
Dataset to be used : https://www.kaggle.com/c/house-prices-advanced-regression-techniques/overview
1. Exploratory Data Analysis and Data Visualization (exploratory_data_analysis)
- General View
- Categorical Variables Analysis
- Numerical Variables Analysis
- Target Analysis
2. Data Preprocessing and Feature Engineering (data_preprocessing_and_feature_engineering)
- General View - Recap - Remember Dataset
- Feature Creation
- Outlier Analysis
- Missing Values Analysis
- Rare Encoding - not handled yet
- Label and/or One Hot Encoding
- Standardization
- Save the Final Dataset --> Pickle Dataset
3. Linear Models (linear_models)
- Multiple Linear Regression
- Lasso Regression
- Ridge Regression
- ElasticNet Regression
4. Nonlinear Models (nonlinear_models)
- K-Nearest Neighbors Regression
- Support Vector Machines
- Artificial Neural Network Models
- Classification and Regression Trees - DecisionTreeRegressor
- RandomForestRegressor
- BaggingRegressor
- Gradient Boosting Regressor
- AdaBoostRegressor
- XGBoost - XGBRegressor
- LightGBM - LGBMRegressor
- CatBoost - CatBoostRegressor
- NGBoost - NGBRegressor
5. Pickle the Models, Saving the Model for later Use
6. Comparison of Regression Metrics of each Model (all_models)
--> For each model steps to follow;
- Model and Prediction
- Evaluation of Model
- Model Tuning
- Model Visualization (Feature Importances, etc.)
- Saving the Model