-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathKeras2NCNN.py
403 lines (325 loc) · 11.8 KB
/
Keras2NCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
from __future__ import division, print_function
import json
import logging
import h5py
import codecs
import os
import sys
import getopt
import numpy as np
import h5tojson
from h5json import Hdf5db
def parseCommandLine(argv):
def printUsage():
print("""
Usage:
python Keras2NCNN.py -i inputFile
Example:
python .\\Keras2NCNN.py -i .\\keras_model.h5
Parameters:
-i: input .h5 format Keras model
""")
model_input = ""
try:
(opts,args) = getopt.getopt(argv,"i:")
if len(opts) == 0:
printUsage()
sys.exit(1)
for (opt, arg) in opts:
if opt == "-i":
model_input = arg
except:
printUsage()
sys.exit(1)
return model_input
def initial_logger():
logger = logging.getLogger("Keras2NCNN")
logger.setLevel(logging.DEBUG)
log_path = "{}{}.log".format(".\\", "Keras2NCNN")
fh = logging.FileHandler(log_path)
fh.setLevel(logging.INFO)
fmt = "%(asctime)s | %(levelname)s | %(filename)s LINE-%(lineno)d | PROCESS-%(process)d | %(message)s"
formatter = logging.Formatter(fmt)
fh.setFormatter(formatter)
logger.addHandler(fh)
return logger
class LayerParameter_ncnn (object):
def __init__(self):
self.name = ''
self.type = ''
self.param = []
self.weights = []
def find_weights_root(h5, layerName):
"""
recursively find the weights and biases value of h5 format layer.
For example,
dense weights root:
"/time_distributed_1/custom_blstm/time_distributed_1".
blstm weights root:
"/bidirectional_1/custom_blstm/bidirectional_1/forward_lstm_1/bias:0"
"/bidirectional_1/custom_blstm/bidirectional_1/backward_lstm_1/bias:0"
"""
layer = h5
layer_name = layerName
while True:
layer = layer[layer_name]
if (not hasattr(layer, "keys")) or len(layer.keys()) > 1:
break
layer_name = list(layer.keys())[0]
return layer
def relu_dump(h5, layerName):
layer = LayerParameter_ncnn()
layer.name = 'relu_' + layerName
layer.type = 'ReLU'
return layer
def softmax_dump(h5, layerName):
layer = LayerParameter_ncnn()
layer.name = 'prob_' + layerName
layer.type = 'Softmax'
# axis
layer.param.append('%d' % 0)
return layer
def dense_dump(h5, layerName):
dense = find_weights_root(h5, layerName)
assert len(dense.keys()) == 2, "expected to have two elements: dense weights, dense biases; but got: {}".format(
dense.keys())
kernel = dense['kernel:0']
bias = dense['bias:0']
npkernel = np.asarray(kernel)
npkernel = np.transpose(npkernel)
npbias = np.asarray(bias)
thefile = open('bias.txt', 'w')
for item in npbias:
thefile.write("%s\n" % item)
thefile.close()
sys.exit(1)
layer = LayerParameter_ncnn()
layer.name = 'fc_' + layerName
layer.type = 'InnerProduct'
layer.param.append('%d' % 300)
layer.param.append('%d' % True)
layer.param.append('%d' % npkernel.size)
layer.weights.append(np.array([0.]))
layer.weights.append(npkernel)
layer.weights.append(np.array([0.]))
layer.weights.append(npbias)
return layer
def bn_dump(h5, layerName, epsilon=0.001):
'''
slope mean variance bias
gamma mean variance beta
Extract batch normalization (BN) weights mean, var, beta and gamma,
and transform the BN weights to kernel and bias.
output = (x - mean) / (sqrt(var) + epsilon) * gamma + beta
= (x * kernel) + bias
kernel = (1 / (sqrt(var) + epsilon)) * gamma
bias = beta - (1 / (sqrt(var) + epsilon)) * gamma * mean
Note: for model inference, mean and var should be pre-computed on training set (NOT on test set)
Reference: http://arxiv.org/abs/1502.03167
'''
batchnorm = find_weights_root(h5, layerName)
assert len(batchnorm.keys()) == 4, "expected to have four elements in batchnorm; but got: {}".format(
batchnorm.keys())
moving_mean = batchnorm['moving_mean:0']
moving_variance = batchnorm['moving_variance:0']
gamma = batchnorm['gamma:0']
beta = batchnorm['beta:0']
npmoving_mean = np.asarray(moving_mean)
npmoving_variance = np.asarray(moving_variance)
npgamma = np.asarray(gamma)
npbeta = np.asarray(beta)
npepsilon = np.full(npmoving_variance.shape, epsilon)
npkernel = np.multiply(np.reciprocal(np.sqrt(np.add(npmoving_variance, npepsilon))), npgamma)
npbias = np.subtract(npbeta, np.multiply(npmoving_mean, npkernel))
layer = LayerParameter_ncnn()
layer.name = 'bn_' + layerName
layer.type = 'Scale'
layer.param.append('%d' % npkernel.size)
layer.param.append('%d' % 1)
layer.weights.append(np.array([0.]))
layer.weights.append(npkernel)
layer.weights.append(np.array([0.]))
layer.weights.append(npbias)
return layer
def embedding_dump(h5, layerName, outfn):
embeddings = find_weights_root(h5, layerName)
embeddings_dic = {}
for idx, embedding in enumerate(embeddings):
embedding_str = " ".join(str(x) for x in embedding)
embeddings_dic[idx] = embedding_str
outfn = outfn + ".json"
with codecs.open(outfn, 'w', "utf8") as fh:
json.dump(embeddings_dic, fh, ensure_ascii=False)
def lstm_dump(h5, layerName, logger=None):
layer = find_weights_root(h5, layerName)
print(list(layer))
assert len(layer.keys()) == 3
rec = layer['recurrent_kernel:0']
kernel = layer['kernel:0']
bias = layer['bias:0']
npkernel = np.asarray(kernel)
print(npkernel.size)
nprec = np.asarray(rec)
print(nprec.size)
npbias = np.asarray(bias)
print(npbias.size)
layer = LayerParameter_ncnn()
layer.name = 'lstm_' + layerName
layer.type = 'LSTM'
layer.param.append('%d' % 300)
layer.param.append('%d' % npkernel.size)
layer.weights.append(np.array([0.]))
layer.weights.append(nprec)
layer.weights.append(npkernel)
layer.weights.append(npbias)
return layer
def pooling_dump(h5, layerName):
layer = LayerParameter_ncnn()
layer.name = 'pool_' + layerName
layer.type = 'Pooling'
# pooling_type: PoolMethod_MAX = 0, PoolMethod_AVE = 1
layer.param.append('%d' % 1)
# kernel_w: default = 0
layer.param.append('%d' % 0)
# stride_w: default = 1
layer.param.append('%d' % 1)
# pad_left: default = 0
layer.param.append('%d' % 0)
# global_pooling: True = 1, False = 0
layer.param.append('%d' % 1)
# pad_mode: default = 0
layer.param.append('%d' % 0)
return layer
class Converter(object):
def __init__(self, h5_weights, logger=None):
assert os.path.isfile(h5_weights), "file {} not exist!".format(h5_weights)
self.h5_file = h5_weights
self.h5 = h5py.File(h5_weights, 'r')
self.logger = logger
self.isNewFormat = None
def _get_layers(self):
dbFilename = h5tojson.getTempFileName()
h5_json = ""
with Hdf5db(self.h5_file, dbFilePath=dbFilename, readonly=True) as db:
dumper = h5tojson.DumpJson(db)
h5_json = dumper.dumpFile()
# find root node according to name
# for latest keras like 2.1.2, root node's alias = /model_weights
# for version before 2.1.2, root node's alias = /
# check it by order
self.isNewFormat = False
for _, v in h5_json["groups"].items():
if v["alias"][0] == "/model_weights":
self.isNewFormat = True
break
if self.isNewFormat is None:
for _, v in h5_json["groups"].items():
if v["alias"][0] == "/":
self.isNewFormat = False
break
if self.isNewFormat is None:
self.logger.error("Cannot found root node in h5 file, return")
return
layers = None
for _, v in h5_json["groups"].items():
if self.isNewFormat is True:
if v["alias"][0] == "/model_weights":
layers = v["attributes"][0]["value"]
else:
if v["alias"][0] == "/":
layers = v["attributes"][0]["value"]
return layers
def _dump_layer_weights(self, layer_name):
if self.isNewFormat is True:
h5 = self.h5['model_weights']
else:
h5 = self.h5
layer_rtn = []
# layers
if "dense" in layer_name:
layer_rtn.append(dense_dump(h5, layer_name))
layer_rtn.append(relu_dump(h5, layer_name))
return layer_rtn
elif "norm" in layer_name:
layer_rtn.append(bn_dump(h5, layer_name))
return layer_rtn
elif "LSTM" in layer_name:
layer_rtn.append(lstm_dump(h5, layer_name, self.logger))
return layer_rtn
elif "pooling" in layer_name:
layer_rtn.append(pooling_dump(h5, layer_name))
return layer_rtn
# output
elif "topic_class" in layer_name:
layer_rtn.append(dense_dump(h5, layer_name))
layer_rtn.append(softmax_dump(h5, layer_name))
return layer_rtn
# input
elif "embedding" in layer_name:
outfn = "{}.{}.{}".format(self.h5_file, layer_name, "fi_weights")
embedding_dump(h5, layer_name, outfn)
return None
elif "flatten" in layer_name:
self.logger.debug("found flatten layer.")
return None
elif "repeat" in layer_name:
self.logger.debug("found repeat layer.")
return None
elif "input" in layer_name:
self.logger.debug("found input layer.")
return None
elif "masking" in layer_name:
self.logger.debug("found masking layer.")
return None
else:
raise ValueError("non supported layer:{}".format(layer_name))
def link_ncnn(self, layer, ncnn_net, ncnn_weights):
layer_type = layer.type
layer_param = layer.param
if isinstance(layer_param, list):
for ind, param in enumerate(layer_param):
layer_param[ind] = str(ind) + '=' + param
elif isinstance(layer_param, dict):
param_dict = layer_param
layer_param = []
for key, param in param_dict.items():
layer_param.append(key + '=' + param)
pp = []
pp.append('%-16s' % layer_type)
pp.append('%-16s %d %d' % (layer.name, 1, 1))
layer_param = pp + layer_param
ncnn_net.append(' '.join(layer_param))
for w in layer.weights:
ncnn_weights.append(w)
def convert(self):
ncnn_net = []
ncnn_weights = []
layers = self._get_layers()
for layer in layers:
layer_ncnn_lst = self._dump_layer_weights(layer)
if layer_ncnn_lst:
for layer_ncnn in layer_ncnn_lst:
self.link_ncnn(layer_ncnn, ncnn_net, ncnn_weights)
text_net = '\n'.join(ncnn_net)
text_net = ('%d %d\n' % (len(ncnn_net), len(ncnn_net))) + text_net
text_net = '7767517\n' + text_net
return text_net, ncnn_weights
if __name__ == '__main__':
''' Initial Logger '''
logger = initial_logger()
''' Parse Command '''
model_name = parseCommandLine(sys.argv[1:])
''' Initial Converter '''
k2n_converter = Converter(model_name, logger)
''' DO Conversion '''
text_net, binary_weights = k2n_converter.convert()
''' Save files '''
ModelDir = '.\\'
NetName = 'model_NCNN'
with open(ModelDir + NetName + '.param', 'w') as f:
f.write(text_net)
with open(ModelDir + NetName + '.bin', 'w') as f:
for weights in binary_weights:
for blob in weights:
blob_32f = blob.flatten().astype(np.float32)
blob_32f.tofile(f)