-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinal_code.py
77 lines (70 loc) · 2.35 KB
/
final_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import cv2
import numpy as np
import pickle
import datetime
from PIL import Image
face_cascade=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
#recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer = cv2.face.EigenFaceRecognizer_create()
recognizer.read("trainner.yml")
labels={"person_name":1}
with open("labels.pickle",'rb')as f:
og_labels=pickle.load(f)
labels={v:k for k,v in og_labels.items()}
data={}
currentDt1=datetime.datetime.now()
cap=cv2.VideoCapture(0)
while True:
ret,frame=cap.read()
gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
faces=face_cascade.detectMultiScale(gray,1.5, 5)
for (x,y,w,h) in faces:
end_cord_x= x+w
end_cord_y = y + h
cv2.rectangle(frame,(x,y),(end_cord_x,end_cord_y),(255,0,0),2)#(stroke=2)
#print(x,y,w,h)
roi_gray=gray[y:y+h, x:x+w]
roi_color = frame[y:y + h, x:x + w]
size = (220,220)
roi_gray = cv2.resize(roi_gray,size)
id_, conf=recognizer.predict(roi_gray)
#print(conf)
if conf>=5500:
#print(conf)
#print(id_)
# print(labels[id_])
font= cv2.FONT_HERSHEY_SIMPLEX
name=labels[id_]
color=(0,255,255)
stroke=2
cv2.putText(frame,name,(x,y),font,1,color,stroke,cv2.LINE_AA)
currentDt = datetime.datetime.now()
# print(name)
if name in data:
difference = currentDt - data[name]
difference_in_seconds = difference.total_seconds()
difference_in_minutes = divmod(difference_in_seconds, 60)[0]
if (difference_in_minutes >= 5):
data[name] = currentDt
else:
data[name] = currentDt
else:
color = (0, 0, 255)
stroke = 2
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(frame, "Unknown", (x, y), font, 1, color, stroke, cv2.LINE_AA)
img_item="my_image.png"
cv2.imwrite(img_item,roi_color)
cv2.imshow('img',frame)
k=cv2.waitKey(1)
if k==32:
break
file = open("database.txt", 'a')
for k in data:
file.write(k)
file.write(":")
file.write(str(data[k]))
file.write("\n")
file.close()
cap.release()
cv2.destroyAllWindows()