-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMatrix3f.cpp
431 lines (361 loc) · 9.64 KB
/
Matrix3f.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
#include "Matrix3f.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include "Matrix2f.h"
#include "Quat4f.h"
#include "Vector3f.h"
Matrix3f::Matrix3f( float fill )
{
for( int i = 0; i < 9; ++i )
{
m_elements[ i ] = fill;
}
}
Matrix3f::Matrix3f( float m00, float m01, float m02,
float m10, float m11, float m12,
float m20, float m21, float m22 )
{
m_elements[ 0 ] = m00;
m_elements[ 1 ] = m10;
m_elements[ 2 ] = m20;
m_elements[ 3 ] = m01;
m_elements[ 4 ] = m11;
m_elements[ 5 ] = m21;
m_elements[ 6 ] = m02;
m_elements[ 7 ] = m12;
m_elements[ 8 ] = m22;
}
Matrix3f::Matrix3f( const Vector3f& v0, const Vector3f& v1, const Vector3f& v2, bool setColumns )
{
if( setColumns )
{
setCol( 0, v0 );
setCol( 1, v1 );
setCol( 2, v2 );
}
else
{
setRow( 0, v0 );
setRow( 1, v1 );
setRow( 2, v2 );
}
}
Matrix3f::Matrix3f( const Matrix3f& rm )
{
memcpy( m_elements, rm.m_elements, 9 * sizeof( float ) );
}
Matrix3f& Matrix3f::operator = ( const Matrix3f& rm )
{
if( this != &rm )
{
memcpy( m_elements, rm.m_elements, 9 * sizeof( float ) );
}
return *this;
}
const float& Matrix3f::operator () ( int i, int j ) const
{
return m_elements[ j * 3 + i ];
}
float& Matrix3f::operator () ( int i, int j )
{
return m_elements[ j * 3 + i ];
}
Vector3f Matrix3f::getRow( int i ) const
{
return Vector3f
(
m_elements[ i ],
m_elements[ i + 3 ],
m_elements[ i + 6 ]
);
}
void Matrix3f::setRow( int i, const Vector3f& v )
{
m_elements[ i ] = v.x();
m_elements[ i + 3 ] = v.y();
m_elements[ i + 6 ] = v.z();
}
Vector3f Matrix3f::getCol( int j ) const
{
int colStart = 3 * j;
return Vector3f
(
m_elements[ colStart ],
m_elements[ colStart + 1 ],
m_elements[ colStart + 2 ]
);
}
void Matrix3f::setCol( int j, const Vector3f& v )
{
int colStart = 3 * j;
m_elements[ colStart ] = v.x();
m_elements[ colStart + 1 ] = v.y();
m_elements[ colStart + 2 ] = v.z();
}
Matrix2f Matrix3f::getSubmatrix2x2( int i0, int j0 ) const
{
Matrix2f out;
for( int i = 0; i < 2; ++i )
{
for( int j = 0; j < 2; ++j )
{
out( i, j ) = ( *this )( i + i0, j + j0 );
}
}
return out;
}
void Matrix3f::setSubmatrix2x2( int i0, int j0, const Matrix2f& m )
{
for( int i = 0; i < 2; ++i )
{
for( int j = 0; j < 2; ++j )
{
( *this )( i + i0, j + j0 ) = m( i, j );
}
}
}
float Matrix3f::determinant() const
{
return Matrix3f::determinant3x3
(
m_elements[ 0 ], m_elements[ 3 ], m_elements[ 6 ],
m_elements[ 1 ], m_elements[ 4 ], m_elements[ 7 ],
m_elements[ 2 ], m_elements[ 5 ], m_elements[ 8 ]
);
}
Matrix3f Matrix3f::inverse( bool* pbIsSingular, float epsilon ) const
{
float m00 = m_elements[ 0 ];
float m10 = m_elements[ 1 ];
float m20 = m_elements[ 2 ];
float m01 = m_elements[ 3 ];
float m11 = m_elements[ 4 ];
float m21 = m_elements[ 5 ];
float m02 = m_elements[ 6 ];
float m12 = m_elements[ 7 ];
float m22 = m_elements[ 8 ];
float cofactor00 = Matrix2f::determinant2x2( m11, m12, m21, m22 );
float cofactor01 = -Matrix2f::determinant2x2( m10, m12, m20, m22 );
float cofactor02 = Matrix2f::determinant2x2( m10, m11, m20, m21 );
float cofactor10 = -Matrix2f::determinant2x2( m01, m02, m21, m22 );
float cofactor11 = Matrix2f::determinant2x2( m00, m02, m20, m22 );
float cofactor12 = -Matrix2f::determinant2x2( m00, m01, m20, m21 );
float cofactor20 = Matrix2f::determinant2x2( m01, m02, m11, m12 );
float cofactor21 = -Matrix2f::determinant2x2( m00, m02, m10, m12 );
float cofactor22 = Matrix2f::determinant2x2( m00, m01, m10, m11 );
float determinant = m00 * cofactor00 + m01 * cofactor01 + m02 * cofactor02;
bool isSingular = ( fabs( determinant ) < epsilon );
if( isSingular )
{
if( pbIsSingular != NULL )
{
*pbIsSingular = true;
}
return Matrix3f();
}
else
{
if( pbIsSingular != NULL )
{
*pbIsSingular = false;
}
float reciprocalDeterminant = 1.0f / determinant;
return Matrix3f
(
cofactor00 * reciprocalDeterminant, cofactor10 * reciprocalDeterminant, cofactor20 * reciprocalDeterminant,
cofactor01 * reciprocalDeterminant, cofactor11 * reciprocalDeterminant, cofactor21 * reciprocalDeterminant,
cofactor02 * reciprocalDeterminant, cofactor12 * reciprocalDeterminant, cofactor22 * reciprocalDeterminant
);
}
}
void Matrix3f::transpose()
{
float temp;
for( int i = 0; i < 2; ++i )
{
for( int j = i + 1; j < 3; ++j )
{
temp = ( *this )( i, j );
( *this )( i, j ) = ( *this )( j, i );
( *this )( j, i ) = temp;
}
}
}
Matrix3f Matrix3f::transposed() const
{
Matrix3f out;
for( int i = 0; i < 3; ++i )
{
for( int j = 0; j < 3; ++j )
{
out( j, i ) = ( *this )( i, j );
}
}
return out;
}
const float *Matrix3f::getElements() const
{
return m_elements;
}
void Matrix3f::print() const
{
printf( "[ %.4f %.4f %.4f ]\n[ %.4f %.4f %.4f ]\n[ %.4f %.4f %.4f ]\n",
m_elements[ 0 ], m_elements[ 3 ], m_elements[ 6 ],
m_elements[ 1 ], m_elements[ 4 ], m_elements[ 7 ],
m_elements[ 2 ], m_elements[ 5 ], m_elements[ 8 ] );
}
// static
float Matrix3f::determinant3x3( float m00, float m01, float m02,
float m10, float m11, float m12,
float m20, float m21, float m22 )
{
return
(
m00 * ( m11 * m22 - m12 * m21 )
- m01 * ( m10 * m22 - m12 * m20 )
+ m02 * ( m10 * m21 - m11 * m20 )
);
}
// static
Matrix3f Matrix3f::ones()
{
Matrix3f m;
for( int i = 0; i < 9; ++i )
{
m.m_elements[ i ] = 1;
}
return m;
}
// static
Matrix3f Matrix3f::identity()
{
Matrix3f m;
m( 0, 0 ) = 1;
m( 1, 1 ) = 1;
m( 2, 2 ) = 1;
return m;
}
// static
Matrix3f Matrix3f::rotateX( float radians )
{
float c = cos( radians );
float s = sin( radians );
return Matrix3f
(
1, 0, 0,
0, c, -s,
0, s, c
);
}
// static
Matrix3f Matrix3f::rotateY( float radians )
{
float c = cos( radians );
float s = sin( radians );
return Matrix3f
(
c, 0, s,
0, 1, 0,
-s, 0, c
);
}
// static
Matrix3f Matrix3f::rotateZ( float radians )
{
float c = cos( radians );
float s = sin( radians );
return Matrix3f
(
c, -s, 0,
s, c, 0,
0, 0, 1
);
}
// static
Matrix3f Matrix3f::scaling( float sx, float sy, float sz )
{
return Matrix3f
(
sx, 0, 0,
0, sy, 0,
0, 0, sz
);
}
// static
Matrix3f Matrix3f::uniformScaling( float s )
{
return Matrix3f
(
s, 0, 0,
0, s, 0,
0, 0, s
);
}
// static
Matrix3f Matrix3f::rotation( const Vector3f& rDirection, float radians )
{
Vector3f normalizedDirection = rDirection.normalized();
float cosTheta = cos( radians );
float sinTheta = sin( radians );
float x = normalizedDirection.x();
float y = normalizedDirection.y();
float z = normalizedDirection.z();
return Matrix3f
(
x * x * ( 1.0f - cosTheta ) + cosTheta, y * x * ( 1.0f - cosTheta ) - z * sinTheta, z * x * ( 1.0f - cosTheta ) + y * sinTheta,
x * y * ( 1.0f - cosTheta ) + z * sinTheta, y * y * ( 1.0f - cosTheta ) + cosTheta, z * y * ( 1.0f - cosTheta ) - x * sinTheta,
x * z * ( 1.0f - cosTheta ) - y * sinTheta, y * z * ( 1.0f - cosTheta ) + x * sinTheta, z * z * ( 1.0f - cosTheta ) + cosTheta
);
}
// static
Matrix3f Matrix3f::rotation( const Quat4f& rq )
{
Quat4f q = rq.normalized();
float xx = q.x() * q.x();
float yy = q.y() * q.y();
float zz = q.z() * q.z();
float xy = q.x() * q.y();
float zw = q.z() * q.w();
float xz = q.x() * q.z();
float yw = q.y() * q.w();
float yz = q.y() * q.z();
float xw = q.x() * q.w();
return Matrix3f
(
1.0f - 2.0f * ( yy + zz ), 2.0f * ( xy - zw ), 2.0f * ( xz + yw ),
2.0f * ( xy + zw ), 1.0f - 2.0f * ( xx + zz ), 2.0f * ( yz - xw ),
2.0f * ( xz - yw ), 2.0f * ( yz + xw ), 1.0f - 2.0f * ( xx + yy )
);
}
//////////////////////////////////////////////////////////////////////////
// Operators
//////////////////////////////////////////////////////////////////////////
Vector3f operator * ( const Matrix3f& m, const Vector3f& v )
{
Vector3f output( 0, 0, 0 );
for( int i = 0; i < 3; ++i )
{
for( int j = 0; j < 3; ++j )
{
output[ i ] += m( i, j ) * v[ j ];
}
}
return output;
}
Matrix3f operator * ( const Matrix3f& x, const Matrix3f& y )
{
Matrix3f product; // zeroes
for( int i = 0; i < 3; ++i )
{
for( int j = 0; j < 3; ++j )
{
for( int k = 0; k < 3; ++k )
{
product( i, k ) += x( i, j ) * y( j, k );
}
}
}
return product;
}