Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DECA DEPENDENCIES #202

Open
pepeballesterostel opened this issue Oct 5, 2023 · 3 comments
Open

DECA DEPENDENCIES #202

pepeballesterostel opened this issue Oct 5, 2023 · 3 comments

Comments

@pepeballesterostel
Copy link

Can someone please tell me how to install dependencies to succesfully run DECA?
Following requirements.txt is pointless for me, and I do not know how to make the different package versions work to run the code.

For example, following requirements_fixed.txt:
doing pip install torch==1.6.0 torchvision==0.7.0
returns

ERROR: Could not find a version that satisfies the requirement torch==1.6.0 (from versions: 1.11.0, 1.12.0, 1.12.1, 1.13.0, 1.13.1, 2.0.0, 2.0.1, 2.1.0)
ERROR: No matching distribution found for torch==1.6.0

Any help would be much appreciated

@axbing
Copy link

axbing commented Oct 24, 2023

I install newest cuda && pytorch.
My cuda sdk is 11.8.
And install torch/torchvision with newest version:
charset-normalizer==3.3.1
chumpy==0.70
face-alignment==1.4.1
future==0.18.3
fvcore==0.1.5.post20221221
idna==3.4
imageio==2.31.2
importlib-metadata==6.7.0
iopath==0.1.10
kornia==0.6.12
llvmlite==0.39.1
networkx==2.6.3
ninja==1.11.1.1
numba==0.56.4
numpy==1.21.6
nvidia-cublas-cu11==11.10.3.66
nvidia-cuda-nvrtc-cu11==11.7.99
nvidia-cuda-runtime-cu11==11.7.99
nvidia-cudnn-cu11==8.5.0.96
opencv-python==4.8.1.78
packaging==23.2
Pillow==9.5.0
portalocker==2.7.0
pytorch3d==0.3.0
PyWavelets==1.3.0
PyYAML==5.1.1
requests==2.31.0
scikit-image==0.19.3
scipy==1.7.3
six==1.16.0
tabulate==0.9.0
termcolor==2.3.0
tifffile==2021.11.2
torch==1.13.1
torchvision==0.14.1
tqdm==4.66.1
typing_extensions==4.7.1
urllib3==2.0.7
yacs==0.1.8
zipp==3.15.0

and modify two line:
detectors.py:
self.model = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False) # _2D --> TWO_D
renderer.py:
standard_rasterize_cuda =
load(name='standard_rasterize_cuda',
sources=[f'{curr_dir}/rasterizer/standard_rasterize_cuda.cpp', f'{curr_dir}/rasterizer/standard_rasterize_cuda_kernel.cu'],
extra_cuda_cflags = ['-std=c++14', '-ccbin=$$(which gcc)']) # cuda10.2 is not compatible with gcc9. Specify gcc 7
from standard_rasterize_cuda import standard_rasterize

'-ccbin=$$(which gcc-7)' --> $$(which gcc)

It works.

@zardamhussain
Copy link

@axbing, after following the same steps as u I'm getting the error

I'm using the python3.7 miniconda and have cuda version-12.2

  1. command
    python demos/demo_reconstruct.py -i TestSamples/examples --saveDepth True --saveObj True
    error - /usr/local/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.29' not found

  2. command
    python demos/demo_reconstruct.py -i TestSamples/examples --saveDepth True --saveObj True --rasterizer_type=pytorch3d
    error - libcudart.so.10.1: cannot open shared object file: No such file or directory

@pepeballesterostel
Copy link
Author

Those dependencies intallations still didn't do the job for me. I leave here the package versions that have finally worked in my case for the community:

Packages that worked with the latest version available, just run:
!pip install -q scipy scikit-image opencv-python PyYAML face-alignment yacs kornia ninja fvcore

In my case I am using cuda version V12.2.140 (12.2), and installed latest version of torch for CUDA 12.1:
!pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

Here are the details of the versions installed:
pytorch3d 0.7.6
torch 2.2.1+cu121
torchaudio 2.2.1+cu121
torchdata 0.7.1
torchsummary 1.5.1
torchtext 0.17.1
torchvision 0.17.1+cu121

Finally, these commands got me the correct package versions:
!pip install chumpy>=0.69 numpy==1.23

The standard_rasterize_cuda setting failed for me. To use pytorch3D instead, I installed the latest version and added the option --rasterizer_type=pytorch3d . With this setup I was able to run DECA model on inference. Hope this helps.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants