-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
55 lines (44 loc) · 1.42 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# preliminary imports
import pandas as pd
import torch
import logging
import time
from torch.utils.data import DataLoader, Dataset
from easydict import EasyDict as edict
# create dataset
class LingFeatDataset(Dataset):
def __init__(self, df):
self.df = df
def num_class(self):
# Return number of classes
return len(self.df['Grade'].unique())
def __len__(self):
# Number of rows
return self.df.shape[0]
def __getitem__(self, idx):
# Retreive 'Text', 'Grade', 'Index' from dataframe
source = self.df['Text'].values[idx]
target = self.df['Grade'].values[idx]
item_idx = self.df.index[idx]
return {
'source': source,
'target': target,
'item_idx': item_idx
}
# collate function
class LingFeatBatchGenerator:
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def __call__(self, batch):
sources = [item['source'] for item in batch]
targets = [item['target'] for item in batch]
item_idxs = [item['item_idx'] for item in batch] # map item during inference stage
inputs = self.tokenizer(
sources,
padding='max_length',
truncation=True,
max_length=512,
return_tensors='pt'
)
labels = torch.LongTensor(targets)
return inputs, labels, item_idxs