-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
174 lines (136 loc) · 6.91 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import argparse
import json
import importlib.util
import sys
import torch
import torch.nn as nn
from collections import defaultdict
from torch.utils.data import DataLoader
from datasets import load_from_disk
from PIL import Image
from tqdm import tqdm
from train import evaluate_model, HuggingFaceDataset
# Config
parser = argparse.ArgumentParser()
parser.add_argument("--log_dir", type=str, default=None, help="The path where trained model is saved.")
parser.add_argument("--ckpt", type=str, default=None, help="Or directly use the path to the trained model.")
# parser.add_argument("--vit_model", type=str, default="google/vit-large-patch16-384", help="Name of the Vision Transformer model.")
# parser.add_argument("--t5_model", type=str, default="t5-base", help="Name of the T5 model.")
parser.add_argument("--batch_size", type=int, default=64, help="Batch size in inference.")
parser.add_argument("--best", action="store_true", help="Whether to use the best model by val metrics.")
parser.add_argument("--infer", action="store_true", help="Do inference and visualization of heatmaps.")
parser.add_argument("--eval", action="store_true", help="Do evaluation and calculation of metrics.")
args = parser.parse_args()
print(args)
def import_model_from_path(script_path):
"""Load the model config from the log_dir"""
module_name = "rahf_model"
spec = importlib.util.spec_from_file_location(module_name, script_path)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
return module.RAHF
if args.log_dir is not None:
RAHF = import_model_from_path(os.path.join(args.log_dir, 'model.py'))
with open(os.path.join(args.log_dir, 'args_config.json')) as f:
config = json.load(f)
else:
from model import RAHF
config = {'vit_model': 'google/vit-large-patch16-384', 't5_model': 't5-base', 'multi_heads': True}
vit_model = config['vit_model']
patch_size = 16
image_size = 384
if vit_model.startswith('google/vit'):
patch_size = int(vit_model.split('-')[-2].replace('patch', ''))
image_size = int(vit_model.split('-')[-1])
model = RAHF(
vit_model=config['vit_model'], t5_model=config['t5_model'],
multi_heads=config['multi_heads'], patch_size=patch_size, image_size=image_size
)
def infer(model, dataloader, device, log_dir, tag, max_iter=None):
model.eval()
data = defaultdict(list)
iter_ = 0
with torch.no_grad():
for batch in tqdm(dataloader):
batch['image'] = batch['image'].to(device)
outputs = model(batch['image'], batch['caption'])
data['pred_text'].extend(outputs['output_seq'])
data['gt_text'].extend(batch['target_text'])
data['image'].append(batch['image'].cpu())
data['caption'].extend(batch['caption'])
out_scores = outputs['scores']
for score in ('plausibility', 'alignment', 'aesthetics', 'overall'):
data[f'gt_score_{score}'].append(batch[score])
data[f'pred_score_{score}'].append(out_scores[score].cpu())
out_heatmaps = outputs['heatmaps']
for heatmap in ('implausibility', 'misalignment'):
data[f'gt_heatmap_{heatmap}'].append(batch[heatmap])
data[f'pred_heatmap_{heatmap}'].append(out_heatmaps[heatmap].cpu())
iter_ += 1
if max_iter is not None and iter_ >= max_iter:
break
out_js = []
for score in ('plausibility', 'alignment', 'aesthetics', 'overall'):
data[f'gt_score_{score}'] = torch.cat(data[f'gt_score_{score}']).flatten().tolist()
data[f'pred_score_{score}'] = torch.cat(data[f'pred_score_{score}']).flatten().tolist()
for i in range(len(data['caption'])):
tmp = {'idx': i}
for k in ['caption', 'gt_text', 'pred_text']:
tmp[k] = data[k][i]
for score in ('plausibility', 'alignment', 'aesthetics', 'overall'):
tmp[f'gt_score_{score}'] = data[f'gt_score_{score}'][i]
tmp[f'pred_score_{score}'] = data[f'pred_score_{score}'][i]
out_js.append(tmp)
if args.best:
tag += '_best'
with open(os.path.join(log_dir, f'{tag}_outputs.json'), 'w') as f:
json.dump(out_js, f, indent=2)
data['image'] = torch.cat(data['image']) * 0.5 + 0.5 # denormalize (works for google's ViTs)
for heatmap in ('implausibility', 'misalignment'):
data[f'gt_heatmap_{heatmap}'] = torch.cat(data[f'gt_heatmap_{heatmap}']).unsqueeze(1).expand_as(data['image'])
data[f'pred_heatmap_{heatmap}'] = torch.cat(data[f'pred_heatmap_{heatmap}']).unsqueeze(1).expand_as(data['image'])
img_path = os.path.join(log_dir, f'{tag}_imgs')
os.makedirs(img_path, exist_ok=True)
for i in range(len(data['caption'])):
imgs1 = [data['image'][i]]
imgs2 = [data['image'][i]]
for heatmap in ('implausibility', 'misalignment'):
imgs1.append(data[f'gt_heatmap_{heatmap}'][i])
imgs2.append(data[f'pred_heatmap_{heatmap}'][i])
imgs1 = torch.cat(imgs1, dim=2)
imgs2 = torch.cat(imgs2, dim=2)
imgs = torch.cat([imgs1, imgs2], dim=1)
imgs = imgs.permute([1, 2, 0]) # change to h x w x 3
imgs = imgs * 255
im = Image.fromarray(imgs.numpy().astype('uint8'))
im.save(os.path.join(img_path, f'{i:03d}.jpg'))
# Load dataset
dataset_path = './data/rich_human_feedback_dataset'
full_dataset = load_from_disk(dataset_path)
# Create PyTorch datasets and dataloaders
train_dataset = HuggingFaceDataset(full_dataset["train"], vit_model, image_size)
dev_dataset = HuggingFaceDataset(full_dataset["dev"], vit_model, image_size)
test_dataset = HuggingFaceDataset(full_dataset["test"], vit_model, image_size)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)#, collate_fn=collate_fn)
dev_dataloader = DataLoader(dev_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4)#, collate_fn=collate_fn)
test_dataloader = DataLoader(dev_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4)#, collate_fn=collate_fn)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.log_dir is not None:
ckpt_name = 'model_best.pt' if args.best else 'model.pt'
ckpt = torch.load(os.path.join(args.log_dir, ckpt_name), map_location='cpu')
else:
ckpt = torch.load(args.ckpt, map_location='cpu')
msg = model.load_state_dict(ckpt)
print("Loaded model:", msg)
model = model.to(device)
if args.eval:
metrics = evaluate_model(model, test_dataloader, nn.MSELoss(), device, 'test')
file = f"test_metrics{'_best' if args.best else ''}.json"
with open(os.path.join(args.log_dir, file), 'wt') as f:
json.dump(metrics, f, indent=4)
if args.infer:
infer(model, test_dataloader, device, args.log_dir, 'test')
# infer(model, dev_dataloader, device, args.log_dir, 'dev')
# infer(model, train_dataloader, device, args.log_dir, 'train', max_iter=10)