-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdirectory_tree.txt
205 lines (204 loc) · 8.3 KB
/
directory_tree.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
Folder PATH listing for volume Work
Volume serial number is 52A1-B650
E:.
| config.yaml
| directory_tree.txt
| LICENSE
| README.md
| test.py
| Train.ipynb
|
+---.Ignore
| Loader.ipynb
|
+---.vscode
| settings.json
|
+---Deeplearning
| | Base.py
| | README.md
| | __init__.py
| |
| \---__pycache__
| Base.cpython-311.pyc
| Base.cpython-39.pyc
| __init__.cpython-311.pyc
| __init__.cpython-39.pyc
|
+---Duffing_Solution
| | Duffing.ipynb
| | Duffing_Runge-Kutta.ipynb
| | PhaseSpace_3d.py
| | Poincare.ipynb
| | poncare_scater.py
| | poncare_scater_all.py
| | README.md
| |
| +---dataloaders
| | | Runge_Kutta.py
| | | __init__.py
| | |
| | \---__pycache__
| | Runge_Kutta.cpython-38.pyc
| | Runge_Kutta.cpython-39.pyc
| | __init__.cpython-38.pyc
| | __init__.cpython-39.pyc
| |
| +---datasets
| | | duffing_euqation.py
| | | gamma=0.2 t_span=(0, 50000) initial_conditions=[-0.5, 0.5] step_frequency=001.npy
| | | gamma=0.2 t_span=(0, 50000) initial_conditions=[-0.5, 0.5] step_frequency=010.npy
| | | gamma=0.2 t_span=(0, 50000) initial_conditions=[0.5, 0.0] step_frequency=001.npy
| | | gamma=0.2 t_span=(0, 50000) initial_conditions=[0.5, 0.0] step_frequency=010.npy
| | | gamma=0.2 t_span=(0, 50000) initial_conditions=[1.5, -1.5] step_frequency=001.npy
| | | gamma=0.2 t_span=(0, 50000) initial_conditions=[1.5, -1.5] step_frequency=010.npy
| | | gamma=0.2 t_span=(0, 50000) initial_conditions=[1.5, 1.5] step_frequency=001.npy
| | | gamma=0.2 t_span=(0, 50000) initial_conditions=[1.5, 1.5] step_frequency=010.npy
| | | gamma=0.37 t_span=(0, 50000) initial_conditions=[-0.5, 0.5] step_frequency=001.npy
| | | gamma=0.37 t_span=(0, 50000) initial_conditions=[-0.5, 0.5] step_frequency=010.npy
| | | gamma=0.37 t_span=(0, 50000) initial_conditions=[0.5, 0.0] step_frequency=001.npy
| | | gamma=0.37 t_span=(0, 50000) initial_conditions=[0.5, 0.0] step_frequency=010.npy
| | | gamma=0.37 t_span=(0, 50000) initial_conditions=[1.5, -1.5] step_frequency=001.npy
| | | gamma=0.37 t_span=(0, 50000) initial_conditions=[1.5, -1.5] step_frequency=010.npy
| | | gamma=0.37 t_span=(0, 50000) initial_conditions=[1.5, 1.5] step_frequency=001.npy
| | | gamma=0.37 t_span=(0, 50000) initial_conditions=[1.5, 1.5] step_frequency=010.npy
| | | saving.py
| | | __init__.py
| | |
| | \---__pycache__
| | duffing_euqation.cpython-38.pyc
| | duffing_euqation.cpython-39.pyc
| | saving.cpython-39.pyc
| | __init__.cpython-38.pyc
| | __init__.cpython-39.pyc
| |
| +---generator
| | | __init__.py
| | |
| | \---__pycache__
| | __init__.cpython-311.pyc
| |
| +---results
| | +---3d phase plane
| | | 3d_phase_space_animation.mp4
| | |
| | +---General solution
| | | Duffing Oscillator (?=0.15, ?=-1.0, ?=1, ?=0.5, ?=0.8).png
| | | Duffing Oscillator (?=0.2, ?=-1.0, ?=1, ?=0.3, ?=1.2).png
| | | Duffing Oscillator (?=0.3, ?=-1.0, ?=1, ?=0.3, ?=1.2).png
| | | Duffing Oscillator (?=0.3, ?=-1.0, ?=1, ?=0.6, ?=1.2).png
| | | Duffing Oscillator (?=0.3, ?=-1.0, ?=1, ?=0.6, ?=1.5).png
| | |
| | +---Gneral Solution and phase plane
| | | Duffing Oscillator (?=0.3, ?=-1.0, ?=1, ?=0.2, ?=1.2).png
| | | Duffing Oscillator (?=0.3, ?=-1.0, ?=1, ?=0.28, ?=1.2).png
| | | Duffing Oscillator (?=0.3, ?=-1.0, ?=1, ?=0.29, ?=1.2).png
| | | Duffing Oscillator (?=0.3, ?=-1.0, ?=1, ?=0.37, ?=1.2).png
| | | Duffing Oscillator (?=0.3, ?=-1.0, ?=1, ?=0.5, ?=1.2).png
| | | Duffing Oscillator (?=0.3, ?=-1.0, ?=1, ?=0.65, ?=1.2).png
| | |
| | \---Poncare section
| | dd.mp4
| | Poincar‚ Map of the Duffing OscillatorFrames=300 points=600 gamma=0.2 omega=1.2 beta=1 alpha=-1.0 delta=0.3.gif
| | Poincar‚ Map of the Duffing OscillatorFrames=300 points=600 gamma=0.28 omega=1.2 beta=1 alpha=-1.0 delta=0.3.gif
| | Poincar‚ Map of the Duffing OscillatorFrames=300 points=600 gamma=0.29 omega=1.2 beta=1 alpha=-1.0 delta=0.3.gif
| | Poincar‚ Map of the Duffing OscillatorFrames=600 points=800 All=True gamma=0.37 omega=1.2 beta=1 alpha=-1.0 delta=0.3.gif
| |
| \---utils
| | plot.py
| | __init__.py
| |
| \---__pycache__
| plot.cpython-39.pyc
| __init__.cpython-39.pyc
|
+---Images
| | 3d_phase_space_animation.gif
| | Acceleration vs. Prediction.png
| | alpha = 0000 gamma=0.37 orgi.png
| | alpha = 0000 gamma=0.37.png
| | Duffing Oscillator (?=0.3, ?=-1.0, ?=1, ?=0.2, ?=1.2).png
| | Duffing Oscillator (?=0.3, ?=-1.0, ?=1, ?=0.29, ?=1.2).png
| | Duffing Oscillator (?=0.3, ?=-1.0, ?=1, ?=0.37, ?=1.2).png
| | Duffing Oscillator (?=0.3, ?=-1.0, ?=1, ?=0.5, ?=1.2).png
| | Gprediction alpha=10.png
| | Gprediction alpha=40.png
| | neural net = CNN-RNN dataset parameters =None index=800.png
| | Robustness against gamma.jpg
| | Robustness against initial conditions.jpg
| | Robustness against Noises.jpg
| |
| \---Results
| Koopamn Koopman gamma=0.37.svg
| Robustness against Noise gamma=0.20 [N].svg
| Robustness against Noise gamma=0.20.svg
| Robustness against Noise gamma=0.37 [N].svg
| Robustness against Noise gamma=0.37.svg
|
+---Loss
| | Koopman_repeat.py
| | loss_function.py
| | README.md
| | __init__.py
| |
| \---__pycache__
| Koopman_repeat.cpython-311.pyc
| loss_function.cpython-311.pyc
| __init__.cpython-311.pyc
|
+---Model
| | decoder.py
| | encoder.py
| | README.md
| | structure.py
| | __init__.py
| |
| \---__pycache__
| decoder.cpython-311.pyc
| encoder.cpython-311.pyc
| structure.cpython-311.pyc
| __init__.cpython-311.pyc
|
+---Saved
| | Gamma =0.2 step_frequency=010 prediction_input_size=200 cu_loss=False init=(1.5, -1.5) noise_factor=2.pt
| | Gamma =0.2 step_frequency=010 prediction_input_size=200 cu_loss=False init=(1.5, -1.5) noise_factor=2_report.csv
| | Gamma =0.37 step_frequency=010 prediction_input_size=200 cu_loss=False init=(1.5, -1.5) noise_factor=2.pt
| | Gamma =0.37 step_frequency=010 prediction_input_size=200 cu_loss=False init=(1.5, -1.5) noise_factor=2_report.csv
| |
| \---.Checkpoints
| ckpt_Gamma =0.2 step_frequency=010 prediction_input_size=200 cu_loss=False init=(1.5, -1.5) noise_factor=2_epoch1.ckpt
| ckpt_Gamma =0.37 step_frequency=010 prediction_input_size=200 cu_loss=False init=(1.5, -1.5) noise_factor=2_epoch1.ckpt
|
\---Utils
| configuration.py
| Eigen_values.py
| utils.py
| __init__.py
|
+---Plot
| | Koopman_Eigenvalue.py
| | Plot.py
| |
| +---Koopman_Eigenvalues
| | Eigenvalues.pdf
| | neural net = RNN dataset parameters =?=0.3, ?=-1.0, ?=1, ?=0.37, ?=1.2 ,t_span=(0, 1000) index=256.png
| | neural net = RNN dataset parameters =?=0.3, ?=-1.0, ?=1, ?=0.5, ?=1.2 ,t_span=(0, 1000) index=256.png
| | neural net = RNN dataset parameters =?=0.3, ?=-1.0, ?=1, ?=0.6, ?=1.2 ,t_span=(0, 1000) index=256.png
| | neural net = RNN dataset parameters =?=0.3, ?=-1.0, ?=1, ?=0.65, ?=1.2 ,t_span=(0, 1000) index=256.png
| |
| \---__pycache__
| Koopman_Eigenvalue.cpython-311.pyc
| Koopman_Eigenvalue.cpython-312.pyc
| Koopman_Eigenvalue.cpython-39.pyc
| Plot.cpython-311.pyc
| Plot.cpython-312.pyc
|
\---__pycache__
configuration.cpython-311.pyc
configuration.cpython-312.pyc
Eigen_values.cpython-311.pyc
Eigen_values.cpython-312.pyc
utils.cpython-311.pyc
utils.cpython-312.pyc
__init__.cpython-311.pyc
__init__.cpython-312.pyc