-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkd_tree.cpp
166 lines (149 loc) · 4.72 KB
/
kd_tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// 用多个heuristic来优化:
// 1. 取中点,并使用quick select
// 2. 取variance最大的一维进行divide
// 3. Query时,若一个结点的两个子树都有可能包含答案,先在与查询点距离最近的一个子树中搜索答案
// 建树平均时间复杂度是O(nlogn),查询平均时间复杂度是O(logn),最坏情况仍然可能是O(n)
#include <bits/stdc++.h>
using namespace std;
const int DIM = 3;
struct KDTree {
double ans;
int n;
vector<vector<int>> child;
vector<vector<double>> p;
vector<vector<vector<double>>> bound;
KDTree(vector<vector<double>>& p) : p(p) {
n = p.size();
child.assign(n, vector<int>(2, -1));
bound.assign(DIM, vector<vector<double>>(n, vector<double>(2)));
Build();
}
double Square(double x) {
return x * x;
}
double Dist(int x, vector<double>& v) {
double ret = 0;
for (int d = 0; d < DIM; d++)
ret += Square(p[x][d] - v[d]);
return sqrt(ret);
}
void Maintain(int x) {
for (int d = 0; d < DIM; d++)
bound[d][x][0] = bound[d][x][1] = p[x][d];
for (int c = 0; c < 2; c++) {
if (child[x][c] != -1) {
for (int d = 0; d < DIM; d++) {
bound[d][x][0] = min(bound[d][x][0], bound[d][child[x][c]][0]);
bound[d][x][1] = max(bound[d][x][1], bound[d][child[x][c]][1]);
}
}
}
}
int Build() {
Build(0, n - 1);
}
int Build(int l, int r) {
if (l > r)
return -1;
int mid = (l + r) / 2;
vector<double> avg(DIM), var(DIM);
for (int d = 0; d < DIM; d++)
for (int i = l; i <= r; i++)
avg[d] += p[i][d];
for (int d = 0; d < DIM; d++)
avg[d] /= (r -l + 1);
for (int d = 0; d < DIM; d++)
for (int i = l; i <= r; i++)
var[d] += Square(p[i][d] - avg[d]);
int dim = 0;
for (int d = 0; d < DIM; d++)
if (var[d] > var[dim])
dim = d;
auto cmp = [&](vector<double>& a, vector<double>& b) {
return a[dim] < b[dim];
};
nth_element(p.begin() + l, p.begin() + mid, p.begin() + r + 1, cmp);
child[mid][0] = Build(l, mid - 1);
child[mid][1] = Build(mid + 1, r);
Maintain(mid);
return mid;
}
double BoundDist(int x, vector<double>& v) {
double ret = 0;
for (int d = 0; d < DIM; d++) {
if (v[d] < bound[d][x][0])
ret += Square(bound[d][x][0] - v[d]);
else if (v[d] > bound[d][x][1])
ret += Square(bound[d][x][1] - v[d]);
}
return sqrt(ret);
}
double Query(vector<double>& v) {
ans = INFINITY;
Query(0, n - 1, v);
return ans;
}
void Query(int l, int r, vector<double>& v) {
if (l > r)
return;
int mid = (l + r) / 2;
ans = min(ans, Dist(mid, v));
if (l == r)
return;
if (child[mid][0] == -1)
Query(mid + 1, r, v);
else if (child[mid][1] == -1)
Query(l, mid - 1, v);
else {
double Distl = BoundDist(child[mid][0], v);
double Distr = BoundDist(child[mid][1], v);
if (Distl < ans && Distr < ans) {
if (Distl < Distr) {
Query(l, mid - 1, v);
if (Distr < ans)
Query(mid + 1, r, v);
}
else {
Query(mid + 1, r, v);
if (Distl < ans)
Query(l, mid - 1, v);
}
}
else {
if (Distl < ans)
Query(l, mid - 1, v);
if (Distr < ans)
Query(mid + 1, r, v);
}
}
}
};
int main() {
int n = 10000;
random_device rd;
mt19937 rng(rd());
uint MAX = -1;
int X = 100000;
vector<vector<double>> p(n, vector<double>(DIM));
for (int i = 0; i < n; i++)
for (int d = 0; d < DIM; d++)
p[i][d] = double(rng()) / MAX * X;
KDTree kd(p);
int q = 1000;
for (int i = 0; i < q; i++) {
vector<double> cur(DIM);
for (int d = 0; d < DIM; d++)
cur[d] = double(rng()) / MAX * X;
double ans = kd.Query(cur);
double sol = INFINITY;
for (int i = 0; i < n; i++) {
double ret = 0;
for (int d = 0; d < DIM; d++)
ret += kd.Square(p[i][d] - cur[d]);
sol = min(sol, sqrt(ret));
}
if (ans != sol)
cout << ans << " " << sol << '\n';
}
return 0;
}