forked from Dream-High/RMVPE
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
78 lines (73 loc) · 2.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import librosa
import time
import argparse
import torch
from src import RMVPE
def parse_args(args=None, namespace=None):
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model",
type=str,
required=True,
help="path to the model checkpoint",
)
parser.add_argument(
"-d",
"--device",
type=str,
default=None,
required=False,
help="cpu or cuda, auto if not set")
parser.add_argument(
"-i",
"--input",
type=str,
required=True,
help="path to the input audio file",
)
parser.add_argument(
"-o",
"--output",
type=str,
required=True,
help="path to the output csv file",
)
parser.add_argument(
"-hop",
"--hop_length",
type=str,
required=False,
default=160,
help="hop_length under 16khz sampling rate | default: 160",
)
parser.add_argument(
"-th",
"--threhold",
type=str,
required=False,
default=0.03,
help="unvoice threhold | default: 0.03",
)
return parser.parse_args(args=args, namespace=namespace)
if __name__ == '__main__':
cmd = parse_args()
model_path = cmd.model
device = cmd.device
audio_path = cmd.input
output_path = cmd.output
hop_length = int(cmd.hop_length)
thred = float(cmd.threhold)
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('loading model and audio')
rmvpe = RMVPE(model_path, hop_length=hop_length)
audio, sr = librosa.load(audio_path, sr=None)
print('start infering ...')
t = time.time()
f0 = rmvpe.infer_from_audio(audio, sr, device=device, thred=thred, use_viterbi=False)
infer_time = time.time() - t
print('time: ', infer_time)
print('RTF: ', infer_time * sr / len(audio))
np.savetxt(output_path, np.array([0.01 * np.arange(len(f0)), f0]).transpose(),delimiter=',')