-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
215 lines (166 loc) · 7.12 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import glob
import logging
import os
import random
import torch
from fairseq.data import FairseqDataset, data_utils
from natsort import natsorted
from PIL import Image
from tqdm import tqdm
logger = logging.getLogger(__name__)
def default_collater(target_dict, samples, dataset=None):
if not samples:
return None
if any([sample is None for sample in samples]):
if not dataset:
return None
len_batch = len(samples)
while True:
samples.append(dataset[random.choice(range(len(dataset)))])
samples =list(filter (lambda x:x is not None, samples))
if len(samples) == len_batch:
break
indices = []
imgs = [] # bs, c, h , w
target_samples = []
target_ntokens = 0
for sample in samples:
index = sample['id']
indices.append(index)
imgs.append(sample['tfm_img'])
target_samples.append(sample['label_ids'].long())
target_ntokens += len(sample['label_ids'])
num_sentences = len(samples)
target_batch = data_utils.collate_tokens(target_samples,
pad_idx=target_dict.pad(),
eos_idx=target_dict.eos(),
move_eos_to_beginning=False)
rotate_batch = data_utils.collate_tokens(target_samples,
pad_idx=target_dict.pad(),
eos_idx=target_dict.eos(),
move_eos_to_beginning=True)
indices = torch.tensor(indices, dtype=torch.long)
imgs = torch.stack(imgs, dim=0)
return {
'id': indices,
'net_input': {
'imgs': imgs,
'prev_output_tokens': rotate_batch
},
'ntokens': target_ntokens,
'nsentences': num_sentences,
'target': target_batch
}
def read_txt_and_tokenize(txt_path: str, bpe, target_dict):
annotations = []
with open(txt_path, 'r', encoding='utf8') as fp:
for line in fp.readlines():
line = line.rstrip()
if not line:
continue
line_split = line.split(',', maxsplit=8)
quadrangle = list(map(int, line_split[:8]))
content = line_split[-1]
if bpe:
encoded_str = bpe.encode(content)
else:
encoded_str = content
xs = [quadrangle[i] for i in range(0, 8, 2)]
ys = [quadrangle[i] for i in range(1, 8, 2)]
bbox = [min(xs), min(ys), max(xs), max(ys)]
annotations.append({'bbox': bbox, 'encoded_str': encoded_str, 'category_id': 0, 'segmentation': [quadrangle]}) # 0 for text, 1 for background
return annotations
def SROIETask2(root_dir: str, bpe, target_dict, crop_img_output_dir=None):
data = []
img_id = -1
crop_data = []
crop_img_id = -1
image_paths = natsorted(list(glob.glob(os.path.join(root_dir, '*.jpg'))))
for jpg_path in tqdm(image_paths):
im = Image.open(jpg_path).convert('RGB')
img_w, img_h = im.size
img_id += 1
txt_path = jpg_path.replace('.jpg', '.txt')
annotations = read_txt_and_tokenize(txt_path, bpe, target_dict)
img_dict = {'file_name': jpg_path, 'width': img_w, 'height': img_h, 'image_id':img_id, 'annotations':annotations}
data.append(img_dict)
for ann in annotations:
crop_w = ann['bbox'][2] - ann['bbox'][0]
crop_h = ann['bbox'][3] - ann['bbox'][1]
if not (crop_w > 0 and crop_h > 0):
logger.warning('Error occurs during image cropping: {} has a zero area bbox.'.format(os.path.basename(jpg_path)))
continue
crop_img_id += 1
crop_im = im.crop(ann['bbox'])
if crop_img_output_dir:
crop_im.save(os.path.join(crop_img_output_dir, '{:d}.jpg'.format(crop_img_id)))
crop_img_dict = {'img':crop_im, 'file_name': jpg_path, 'width': crop_w, 'height': crop_h, 'image_id':crop_img_id, 'encoded_str':ann['encoded_str']}
crop_data.append(crop_img_dict)
return data, crop_data
class SROIETextRecognitionDataset(FairseqDataset):
def __init__(self, root_dir, tfm, bpe_parser, target_dict, crop_img_output_dir=None):
self.root_dir = root_dir
self.tfm = tfm
self.target_dict = target_dict
# self.bpe_parser = bpe_parser
self.ori_data, self.data = SROIETask2(root_dir, bpe_parser, target_dict, crop_img_output_dir)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
img_dict = self.data[idx]
image = img_dict['img']
encoded_str = img_dict['encoded_str']
input_ids = self.target_dict.encode_line(encoded_str, add_if_not_exist=False)
tfm_img = self.tfm(image) # h, w, c
return {'id': idx, 'tfm_img': tfm_img, 'label_ids': input_ids}
def size(self, idx):
img_dict = self.data[idx]
encoded_str = img_dict['encoded_str']
input_ids = self.target_dict.encode_line(encoded_str, add_if_not_exist=False)
return len(input_ids)
def num_tokens(self, idx):
return self.size(idx)
def collater(self, samples):
return default_collater(self.target_dict, samples)
def STR(gt_path, bpe_parser):
root_dir = os.path.dirname(gt_path)
data = []
img_id = 0
with open(gt_path, 'r') as fp:
for line in tqdm(list(fp.readlines()), desc='Loading STR:'):
line = line.rstrip()
temp = line.split('\t', 1)
img_file = temp[0]
text = temp[1]
img_path = os.path.join(root_dir, 'image', img_file)
if not bpe_parser:
encoded_str = text
else:
encoded_str = bpe_parser.encode(text)
data.append({'img_path': img_path, 'image_id':img_id, 'text':text, 'encoded_str':encoded_str})
img_id += 1
return data
class SyntheticTextRecognitionDataset(FairseqDataset):
def __init__(self, gt_path, tfm, bpe_parser, target_dict):
self.gt_path = gt_path
self.tfm = tfm
self.target_dict = target_dict
self.data = STR(gt_path, bpe_parser)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
img_dict = self.data[idx]
image = Image.open(img_dict['img_path']).convert('RGB')
encoded_str = img_dict['encoded_str']
input_ids = self.target_dict.encode_line(encoded_str, add_if_not_exist=False)
tfm_img = self.tfm(image) # h, w, c
return {'id': idx, 'tfm_img': tfm_img, 'label_ids': input_ids}
def size(self, idx):
img_dict = self.data[idx]
encoded_str = img_dict['encoded_str']
input_ids = self.target_dict.encode_line(encoded_str, add_if_not_exist=False)
return len(input_ids)
def num_tokens(self, idx):
return self.size(idx)
def collater(self, samples):
return default_collater(self.target_dict, samples)