-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeit_models.py
690 lines (603 loc) · 28.4 KB
/
deit_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
import torch.nn as nn
from fairseq.models import FairseqEncoder, register_model, FairseqEncoderDecoderModel, register_model_architecture
from fairseq.models.transformer import TransformerDecoder, Embedding, TransformerModel
from fairseq.models.transformer import base_architecture as base_transformer
from fairseq.models.fairseq_encoder import EncoderOut
from fairseq.modules import MultiheadAttention
from fairseq.modules.quant_noise import quant_noise
from torch.nn import Parameter
from fairseq import utils
from torch import Tensor
import torch
from torch.hub import load_state_dict_from_url
from timm.models import create_model
from functools import partial
import logging
import argparse
from typing import Dict, Optional, Tuple
import re
logger = logging.getLogger(__name__)
DEFAULT_MAX_TARGET_POSITIONS = 1024
class UniLMMultiheadAttention(MultiheadAttention):
def __init__(
self,
embed_dim,
num_heads,
kdim=None,
vdim=None,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
self_attention=False,
encoder_decoder_attention=False,
q_noise=0.0,
qn_block_size=8):
super().__init__(embed_dim, num_heads, kdim=kdim, vdim=vdim, dropout=dropout, bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=self_attention, encoder_decoder_attention=encoder_decoder_attention, q_noise=q_noise, qn_block_size=qn_block_size)
self.qk_head_dim = 96
self.scaling = self.qk_head_dim ** -0.5
qk_output_dim = self.qk_head_dim * self.num_heads
assert qk_output_dim == 1152
self.k_proj = quant_noise(
nn.Linear(self.kdim, qk_output_dim, bias=bias), q_noise, qn_block_size
)
self.q_proj = quant_noise(
nn.Linear(embed_dim, qk_output_dim, bias=bias), q_noise, qn_block_size
)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, qk_output_dim))
else:
self.bias_k = None
def forward(
self,
query,
key: Optional[Tensor],
value: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
need_weights: bool = True,
static_kv: bool = False,
attn_mask: Optional[Tensor] = None,
before_softmax: bool = False,
need_head_weights: bool = False,
) -> Tuple[Tensor, Optional[Tensor]]:
if need_head_weights:
need_weights = True
is_tpu = query.device.type == "xla"
tgt_len, bsz, embed_dim = query.size()
src_len = tgt_len
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if key is not None:
src_len, key_bsz, _ = key.size()
if not torch.jit.is_scripting():
assert key_bsz == bsz
assert value is not None
assert src_len, bsz == value.shape[:2]
# Disabled
# if (
# not self.onnx_trace
# and not is_tpu # don't use PyTorch version on TPUs
# and incremental_state is None
# and not static_kv
# # A workaround for quantization to work. Otherwise JIT compilation
# # treats bias in linear module as method.
# and not torch.jit.is_scripting()
# ):
# assert key is not None and value is not None
# return F.multi_head_attention_forward(
# query,
# key,
# value,
# self.embed_dim,
# self.num_heads,
# torch.empty([0]),
# torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
# self.bias_k,
# self.bias_v,
# self.add_zero_attn,
# self.dropout_module.p,
# self.out_proj.weight,
# self.out_proj.bias,
# self.training or self.dropout_module.apply_during_inference,
# key_padding_mask,
# need_weights,
# attn_mask,
# use_separate_proj_weight=True,
# q_proj_weight=self.q_proj.weight,
# k_proj_weight=self.k_proj.weight,
# v_proj_weight=self.v_proj.weight,
# )
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if saved_state is not None and "prev_key" in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.q_proj(query)
if key is None:
assert value is None
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
assert key is not None and value is not None
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[
key_padding_mask,
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
],
dim=1,
)
q = (
q.contiguous()
.view(tgt_len, bsz * self.num_heads, self.qk_head_dim)
.transpose(0, 1)
)
if k is not None:
k = (
k.contiguous()
.view(-1, bsz * self.num_heads, self.qk_head_dim)
.transpose(0, 1)
)
if v is not None:
v = (
v.contiguous()
.view(-1, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.qk_head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
src_len = k.size(1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
prev_key_padding_mask: Optional[Tensor] = None
if "prev_key_padding_mask" in saved_state:
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
assert k is not None and v is not None
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
key_padding_mask=key_padding_mask,
prev_key_padding_mask=prev_key_padding_mask,
batch_size=bsz,
src_len=k.size(1),
static_kv=static_kv,
)
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.qk_head_dim)
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_key_padding_mask"] = key_padding_mask
# In this branch incremental_state is never None
assert incremental_state is not None
incremental_state = self._set_input_buffer(incremental_state, saved_state)
assert k is not None
assert k.size(1) == src_len
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
assert v is not None
src_len += 1
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
if attn_mask is not None:
attn_mask = torch.cat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[
key_padding_mask,
torch.zeros(key_padding_mask.size(0), 1).type_as(
key_padding_mask
),
],
dim=1,
)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
if self.onnx_trace:
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
attn_weights += attn_mask
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
if not is_tpu:
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
float("-inf"),
)
else:
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if before_softmax:
return attn_weights, v
attn_weights_float = utils.softmax(
attn_weights, dim=-1, onnx_trace=self.onnx_trace
)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = self.dropout_module(attn_weights)
assert v is not None
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
if self.onnx_trace and attn.size(1) == 1:
# when ONNX tracing a single decoder step (sequence length == 1)
# the transpose is a no-op copy before view, thus unnecessary
attn = attn.contiguous().view(tgt_len, bsz, embed_dim)
else:
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
attn_weights: Optional[Tensor] = None
if need_weights:
attn_weights = attn_weights_float.view(
bsz, self.num_heads, tgt_len, src_len
).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights
from argparse import Namespace
from omegaconf import DictConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
@register_model('DeiT_TR')
class DeiTTRModel(FairseqEncoderDecoderModel):
def load_state_dict(
self,
state_dict,
strict=True,
model_cfg: Optional[DictConfig] = None,
args: Optional[Namespace] = None,
):
if model_cfg is None and args is not None:
logger.warn("using 'args' is deprecated, please update your code to use dataclass config")
model_cfg = convert_namespace_to_omegaconf(args).model
self.upgrade_state_dict(state_dict)
from fairseq.checkpoint_utils import prune_state_dict
new_state_dict = prune_state_dict(state_dict, model_cfg)
if not model_cfg.ape:
model_seq_len = self.state_dict()['encoder.deit.pos_embed'].shape[1]
ckpt_seq_len = new_state_dict['encoder.deit.pos_embed'].shape[1]
logger.info('Load from {:d} seq len to {:d}'.format(ckpt_seq_len, model_seq_len))
if model_seq_len <= ckpt_seq_len:
new_state_dict['encoder.deit.pos_embed'] = new_state_dict['encoder.deit.pos_embed'][:, :model_seq_len, :]
else:
t = self.state_dict()['encoder.deit.pos_embed']
t[:, :ckpt_seq_len, :] = new_state_dict['encoder.deit.pos_embed']
new_state_dict['encoder.deit.pos_embed'] = t
return super().load_state_dict(new_state_dict, strict=False)
@staticmethod
def add_args(parser):
TransformerModel.add_args(parser)
parser.add_argument(
'--deit-arch', type=str,
help='the arch name for the DeiT encoder'
)
parser.add_argument(
'--ape', action='store_true',
help='if use absolute_pos_embed'
)
parser.set_defaults(ape=False)
parser.add_argument(
'--mask-ratio', default=0.0, type=float,
help='the mask ratio for the encoder output masking.'
)
@staticmethod
def read_args_from_roberta(roberta_args: argparse.Namespace):
# TODO: this would become easier if encoder/decoder where using a similar
# TransformerConfig object
args = argparse.Namespace(**vars(roberta_args))
attr_map = [
("encoder_attention_heads", "decoder_attention_heads"),
("encoder_embed_dim", "decoder_embed_dim"),
("encoder_embed_dim", "decoder_output_dim"),
("encoder_normalize_before", "decoder_normalize_before"),
("encoder_layers_to_keep", "decoder_layers_to_keep"),
("encoder_ffn_embed_dim", "decoder_ffn_embed_dim"),
("encoder_layerdrop", "decoder_layerdrop"),
("encoder_layers", "decoder_layers"),
("encoder_learned_pos", "decoder_learned_pos"),
# should this be set from here ?
("max_positions", "max_target_positions"),
]
for k1, k2 in attr_map:
setattr(args, k2, getattr(roberta_args, k1))
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = not roberta_args.untie_weights_roberta
return args
@classmethod
def build_model(cls, args, task):
encoder = DeiTTREncoder(
args = args,
dictionary = task.source_dictionary
)
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS
decoder_embed_tokens = cls.build_embedding(
args, task.target_dictionary, args.decoder_embed_dim, args.decoder_embed_path
)
if getattr(args, "decoder_pretrained", None) == 'unilm':
args.decoder_attention_heads = 12
if getattr(args, "decoder_pretrained", None).startswith('roberta2'):
logger.info('Using the tengchao version loading roberta.')
pretrained_model = getattr(args, "decoder_pretrained", None)
specified = pretrained_model.find('-')!=-1
if specified:
pretrained_model = pretrained_model.replace('-', '.')
logger.info('Load pre-trained decoder parameters from {}'.format(pretrained_model))
roberta = torch.hub.load('pytorch/fairseq', pretrained_model)
elif args.decoder_layers == 6:
logger.info('Load pre-trained decoder parameters from roberta.base')
roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
elif args.decoder_layers == 12:
logger.info('Load pre-trained decoder parameters from roberta.large')
roberta = torch.hub.load('pytorch/fairseq:main', 'roberta.large')
else:
raise AttributeError('Cannot determind the pre-trained model')
roberta.model.args.encoder_layers = args.decoder_layers
roberta.model.args.fp16 = args.fp16
roberta_args = DeiTTRModel.read_args_from_roberta(roberta.model.args)
roberta_args.encoder_embed_dim = args.encoder_embed_dim
decoder = TransformerDecoder(
roberta_args,
task.target_dictionary,
decoder_embed_tokens,
no_encoder_attn=False,
)
roberta_layers = roberta.model.encoder.sentence_encoder.layers
decoder_layers = decoder.layers
offset = len(roberta_layers) - len(decoder_layers)
assert offset >= 0
decoder_dict = roberta.state_dict()
new_decoder_dict = {}
for key, val in decoder_dict.items():
if key.startswith('model.encoder.sentence_encoder.layers.'):
layer_num = int(key[len('model.encoder.sentence_encoder.layers.'):].split('.')[0])
if layer_num - offset < 0:
continue
else:
new_key = 'model.encoder.sentence_encoder.layers.{}.'.format(
str(layer_num - offset)) + '.'.join(
key[len('model.encoder.sentence_encoder.layers.'):].split('.')[1:])
new_decoder_dict[new_key] = val
else:
new_decoder_dict[key] = val
decoder_dict = new_decoder_dict
for k, w in list(decoder_dict.items()):
if '.lm_head' in k:
k_proj = "output_projection." + k[len('model.encoder.lm_head.'):]
decoder_dict[k_proj] = w.detach().clone()
del decoder_dict[k]
del decoder_dict['_float_tensor']
del decoder_dict['output_projection.weight']
del decoder_dict['output_projection.bias']
del decoder_dict['output_projection.dense.weight']
del decoder_dict['output_projection.dense.bias']
del decoder_dict['output_projection.layer_norm.weight']
del decoder_dict['output_projection.layer_norm.bias']
new_decoder_dict = {}
for key, val in decoder_dict.items():
if "sentence_encoder" in key:
key = key[len('model.encoder.sentence_encoder.'):]
elif "encoder" in key:
key = key[len('model.encoder.'):]
new_decoder_dict[key] = val
missing_keys, unexpected_keys = decoder.load_state_dict(
new_decoder_dict, strict=False
)
elif getattr(args, "decoder_pretrained", None).startswith('roberta'):
decoder = TransformerDecoder(
args = args,
dictionary=task.target_dictionary,
embed_tokens=decoder_embed_tokens,
no_encoder_attn=False
)
pretrained_model = getattr(args, "decoder_pretrained", None)
specified = pretrained_model.find('-')!=-1
if specified:
pretrained_model = pretrained_model.replace('-', '.')
logger.info('Load pre-trained decoder parameters from {}'.format(pretrained_model))
roberta = torch.hub.load('pytorch/fairseq', pretrained_model)
elif args.decoder_layers == 6:
logger.info('Load pre-trained decoder parameters from roberta.base')
roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
elif args.decoder_layers == 12:
logger.info('Load pre-trained decoder parameters from roberta.large')
roberta = torch.hub.load('pytorch/fairseq', 'roberta.large')
else:
raise AttributeError('Cannot determind the pre-trained model')
decoder.embed_tokens.load_state_dict(roberta.model.encoder.sentence_encoder.embed_tokens.state_dict())
roberta_layers = roberta.model.encoder.sentence_encoder.layers
decoder_layers = decoder.layers
offset = len(roberta_layers) - len(decoder_layers)
assert offset >= 0
for i in range(len(decoder_layers)):
roberta_i = i + offset
decoder_layers[i].self_attn.load_state_dict(roberta_layers[roberta_i].self_attn.state_dict())
decoder_layers[i].self_attn_layer_norm.load_state_dict(roberta_layers[roberta_i].self_attn_layer_norm.state_dict())
model = cls(encoder, decoder)
return model
@classmethod
def build_embedding(cls, args, dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
def forward(self, imgs, prev_output_tokens, **kwargs):
encoder_out = self.encoder(imgs, **kwargs)
decoder_out = self.decoder(
prev_output_tokens, encoder_out=encoder_out, **kwargs
)
return decoder_out
# @register_model_architecture('DeiT_TR', 'DeiT_TR_base')
# def DeiT_TR_base(args):
# # DeiT Encoder deit_base_distilled_patch16_224
# args.deit_arch = getattr(args, "deit_arch", "deit_base_distilled_patch16_224")
# # Transformer Decoder
# args.encoder_embed_dim = 768
# base_transformer(args)
@register_model_architecture('DeiT_TR', 'deit_base_decoder_base')
def deit_base_decoder_base(args):
# DeiT Encoder deit_base_distilled_patch16_384
args.deit_arch = getattr(args, "deit_arch", "deit_base_distilled_patch16_384")
# Transformer Decoder
args.encoder_embed_dim = 768
base_transformer(args)
# @register_model_architecture('DeiT_TR', 'DeiT_TR_large_12layers')
# def DeiT_TR_large_12layers(args):
# # DeiT Encoder deit_base_distilled_patch16_384
# args.deit_arch = getattr(args, "deit_arch", "deit_base_distilled_patch16_384")
# # Transformer Decoder
# args.encoder_embed_dim = 768
# args.decoder_layers = getattr(args, "decoder_layers", 12)
# base_transformer(args)
@register_model_architecture('DeiT_TR', 'deit_base_decoder_large')
def deit_base_decoder_large(args):
# DeiT Encoder deit_base_distilled_patch16_384
args.deit_arch = getattr(args, "deit_arch", "deit_base_distilled_patch16_384")
# Transformer Decoder
args.encoder_embed_dim = 768
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
base_transformer(args)
@register_model_architecture('DeiT_TR', 'beit_base_decoder_large')
def beit_base_decoder_large(args):
# DeiT Encoder deit_base_distilled_patch16_384
args.deit_arch = getattr(args, "deit_arch", "beit_base_patch16_384")
# Transformer Decoder
args.encoder_embed_dim = 768
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
base_transformer(args)
@register_model_architecture('DeiT_TR', 'beit_large_decoder_large')
def beit_large_decoder_large(args):
# DeiT Encoder deit_base_distilled_patch16_384
args.deit_arch = getattr(args, "deit_arch", "beit_large_patch16_384")
# Transformer Decoder
args.encoder_embed_dim = 1024
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
base_transformer(args)
@register_model_architecture('DeiT_TR', 'DeiT_TR_LargeR_BEiT_Large')
def beit_large_decoder_large(args):
# DeiT Encoder deit_base_distilled_patch16_384
args.deit_arch = getattr(args, "deit_arch", "beit_large_patch16_384")
# Transformer Decoder
args.encoder_embed_dim = 1024
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
base_transformer(args)
@register_model_architecture('DeiT_TR', 'deit_base_decoder_large_custom_size')
def deit_base_decoder_large_custom_size(args):
# DeiT Encoder deit_base_distilled_patch16_custom_size
args.deit_arch = getattr(args, "deit_arch", "deit_base_distilled_patch16_custom_size")
# Transformer Decoder
args.encoder_embed_dim = 768
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
base_transformer(args)
class DeiTTREncoder(FairseqEncoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
if 'custom_size' in args.deit_arch:
self.deit = create_model(args.deit_arch, pretrained=True, img_size=args.input_size, ape=args.ape, mask_ratio=args.mask_ratio)
else:
self.deit = create_model(args.deit_arch, pretrained=True, ape=args.ape, mask_ratio=args.mask_ratio)
self.fp16 = args.fp16
def forward(self, imgs):
if self.fp16:
imgs = imgs.half()
x, encoder_embedding = self.deit.forward_features(imgs) # bs, n + 2, dim
x = x.transpose(0, 1) # n + 2, bs, dim
encoder_padding_mask = torch.zeros(*x.shape[:2]).transpose(0, 1).to(imgs.device)
return {
"encoder_out": [x], # T x B x C
"encoder_padding_mask": [encoder_padding_mask], # B x T
"encoder_embedding": [encoder_embedding], # B x T x C
"encoder_states": [], # List[T x B x C]
"src_tokens": [],
"src_lengths": [],
}
def reorder_encoder_out(self, encoder_out, new_order):
"""
Reorder encoder output according to `new_order`.
Args:
encoder_out: output from the ``forward()`` method
new_order (LongTensor): desired order
Returns:
`encoder_out` rearranged according to `new_order`
"""
_encoder_out = encoder_out['encoder_out'][0]
_encoder_padding_mask = encoder_out['encoder_padding_mask'][0]
_encoder_embedding = encoder_out['encoder_embedding'][0]
return {
"encoder_out": [_encoder_out.index_select(1, new_order)],
"encoder_padding_mask": [_encoder_padding_mask.index_select(0, new_order)], # B x T
"encoder_embedding": [_encoder_padding_mask.index_select(0, new_order)], # B x T x C
"encoder_states": [],
"src_tokens": [],
"src_lengths": [],
}
if __name__ == '__main__':
pass