forked from InternLM/InternLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweb_demo.py
127 lines (94 loc) · 4.25 KB
/
web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""
This script refers to the dialogue example of streamlit, the interactive generation code of chatglm2 and transformers. We mainly modified part of the code logic to adapt to the generation of our model.
Please refer to these links below for more information:
1. streamlit chat example: https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps
2. chatglm2: https://github.com/THUDM/ChatGLM2-6B
3. transformers: https://github.com/huggingface/transformers
"""
import streamlit as st
import torch
from dataclasses import dataclass, asdict
from typing import List, Optional, Callable, Optional
import copy
import warnings
import logging
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.utils import logging
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList
from tools.transformers.interface import generate_interactive, GenerationConfig
logger = logging.get_logger(__name__)
def on_btn_click():
del st.session_state.messages
@st.cache_resource
def load_model():
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16).cuda()
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True)
return model, tokenizer
def prepare_generation_config():
with st.sidebar:
max_length = st.slider("Max Length", min_value=32, max_value=2048, value=2048)
top_p = st.slider(
'Top P', 0.0, 1.0, 0.8, step=0.01
)
temperature = st.slider(
'Temperature', 0.0, 1.0, 0.7, step=0.01
)
st.button("Clear Chat History", on_click=on_btn_click)
generation_config = GenerationConfig(
max_length=max_length,
top_p=top_p,
temperature=temperature
)
return generation_config
user_prompt = "<|User|>:{user}<eoh>\n"
robot_prompt = "<|Bot|>:{robot}<eoa>\n"
cur_query_prompt = "<|User|>:{user}<eoh>\n<|Bot|>:"
def combine_history(prompt):
messages = st.session_state.messages
total_prompt = ""
for message in messages:
cur_content = message["content"]
if message["role"] == "user":
cur_prompt = user_prompt.replace("{user}", cur_content)
elif message["role"] == "robot":
cur_prompt = robot_prompt.replace("{robot}", cur_content)
else:
raise RuntimeError
total_prompt += cur_prompt
total_prompt = total_prompt + cur_query_prompt.replace("{user}", prompt)
return total_prompt
def main():
#torch.cuda.empty_cache()
print("load model begin.")
model, tokenizer = load_model()
print("load model end.")
user_avator = "doc/imgs/user.png"
robot_avator = "doc/imgs/robot.png"
st.title("InternLM-Chat-7B")
generation_config = prepare_generation_config()
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message.get("avatar")):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What is up?"):
# Display user message in chat message container
with st.chat_message("user", avatar=user_avator):
st.markdown(prompt)
real_prompt = combine_history(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": user_avator})
with st.chat_message("robot", avatar=robot_avator):
message_placeholder = st.empty()
for cur_response in generate_interactive(model=model, tokenizer=tokenizer, prompt=real_prompt, additional_eos_token_id=103028, **asdict(generation_config)):
# Display robot response in chat message container
message_placeholder.markdown(cur_response + "▌")
message_placeholder.markdown(cur_response)
# Add robot response to chat history
st.session_state.messages.append({"role": "robot", "content": cur_response, "avatar": robot_avator})
torch.cuda.empty_cache()
if __name__ == "__main__":
main()