-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxoshiro.go
344 lines (330 loc) · 8.8 KB
/
xoshiro.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
// +build go1.9
package crazy
import (
"encoding/binary"
"io"
"math/bits"
)
// Xoshiro implements the xoshiro256** PRNG created by David Blackman and
// Sebastiano Vigna. It has period 2**256-1 with 256 state bits and exhibits
// 4-equidistribution (all tuples of four consecutive 64-bit values except the
// all-zero tuple appear once in the sequence), with irrelevantly large linear
// complexity in all bits.
//
// Compared to MT64-19937, xoshiro256** is much faster and smaller, but its
// period is also much smaller, and it has a much lower dimensional
// distribution. xoshiro recovers from "poor" states quickly.
type Xoshiro struct {
w, x, y, z uint64
}
// NewXoshiro produces an unseeded Xoshiro. Call Seed[IV]() or Restore() prior
// to use.
func NewXoshiro() *Xoshiro {
return &Xoshiro{}
}
// SeedIV initializes the generator using all bits of iv, which may be of any
// size or nil.
func (xoshi *Xoshiro) SeedIV(iv []byte) {
// Seed using Sebastiano Vigna's SplitMix64, as recommended by the
// xoroshiro128+ source. However, that is the recommendation "if you have
// a 64-bit seed," so we need a strategy to use more bits than that in a
// way that will actually increase entropy up to the state size. What we
// shall do is initialize the generator to an SM64-generated state, then
// for each 256 bits of the iv, produce four variates from the generator,
// add those 256 bits, then add four more iterations of the SM64.
var sm uint64
sm += 0x9e3779b97f4a7c15
z := sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.w = z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.x = z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.y = z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.z = z
for len(iv) >= 32 {
xoshi.Uint64()
xoshi.Uint64()
xoshi.Uint64()
xoshi.Uint64()
xoshi.w ^= binary.LittleEndian.Uint64(iv)
iv = iv[8:]
xoshi.x ^= binary.LittleEndian.Uint64(iv)
iv = iv[8:]
xoshi.y ^= binary.LittleEndian.Uint64(iv)
iv = iv[8:]
xoshi.z ^= binary.LittleEndian.Uint64(iv)
iv = iv[8:]
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.w ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.x ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.y ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.z ^= z
}
if len(iv) > 24 {
xoshi.Uint64()
xoshi.Uint64()
xoshi.Uint64()
xoshi.Uint64()
xoshi.w ^= binary.LittleEndian.Uint64(iv)
iv = iv[8:]
xoshi.x ^= binary.LittleEndian.Uint64(iv)
iv = iv[8:]
xoshi.y ^= binary.LittleEndian.Uint64(iv)
iv = iv[8:]
p := []byte{7: 0}
copy(p, iv)
xoshi.z ^= binary.LittleEndian.Uint64(p)
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.w ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.x ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.y ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.z ^= z
} else if len(iv) > 16 {
xoshi.Uint64()
xoshi.Uint64()
xoshi.Uint64()
xoshi.w ^= binary.LittleEndian.Uint64(iv)
iv = iv[8:]
xoshi.x ^= binary.LittleEndian.Uint64(iv)
iv = iv[8:]
p := []byte{7: 0}
copy(p, iv)
xoshi.y ^= binary.LittleEndian.Uint64(p)
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.w ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.x ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.y ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.z ^= z
} else if len(iv) > 8 {
xoshi.Uint64()
xoshi.Uint64()
xoshi.w ^= binary.LittleEndian.Uint64(iv)
iv = iv[8:]
p := []byte{7: 0}
copy(p, iv)
xoshi.x ^= binary.LittleEndian.Uint64(p)
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.w ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.x ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.y ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.z ^= z
} else if len(iv) > 0 {
xoshi.Uint64()
p := []byte{7: 0}
copy(p, iv)
xoshi.w ^= binary.LittleEndian.Uint64(p)
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.w ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.x ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.y ^= z
sm += 0x9e3779b97f4a7c15
z = sm
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9
z = (z ^ (z >> 27)) * 0x94d049bb133111eb
z ^= z >> 31
xoshi.z ^= z
}
}
// Uint64 produces a 64-bit pseudo-random value.
func (xoshi *Xoshiro) Uint64() uint64 {
r := bits.RotateLeft64(xoshi.x*5, 7) * 9
t := xoshi.x << 17
xoshi.y ^= xoshi.w
xoshi.z ^= xoshi.x
xoshi.x ^= xoshi.y
xoshi.w ^= xoshi.z
xoshi.y ^= t
xoshi.z = bits.RotateLeft64(xoshi.z, 45)
return r
}
// Read fills p with random bytes generated 64 bits at a time, discarding
// unused bytes. n will always be len(p) and err will always be nil.
func (xoshi *Xoshiro) Read(p []byte) (n int, err error) {
n = len(p)
for len(p) > 8 {
binary.LittleEndian.PutUint64(p, xoshi.Uint64())
p = p[8:]
}
b := [8]byte{}
binary.LittleEndian.PutUint64(b[:], xoshi.Uint64())
copy(p, b[:])
return n, nil
}
// Save serializes the current state of the xoshiro256** generator. Values
// produced by such a generator that has Restore()d this state are guaranteed
// to match those produced by this exact generator. n should always be 32
// bytes.
func (xoshi *Xoshiro) Save(into io.Writer) (n int, err error) {
p := []byte{31: 0}
binary.LittleEndian.PutUint64(p, xoshi.w)
binary.LittleEndian.PutUint64(p[8:], xoshi.x)
binary.LittleEndian.PutUint64(p[16:], xoshi.y)
binary.LittleEndian.PutUint64(p[24:], xoshi.z)
return into.Write(p)
}
// Restore loads a Save()d xoshiro256** state.
func (xoshi *Xoshiro) Restore(from io.Reader) (n int, err error) {
p := []byte{31: 0}
if n, err = from.Read(p); n < len(p) {
return n, err
}
xoshi.w = binary.LittleEndian.Uint64(p)
xoshi.x = binary.LittleEndian.Uint64(p[8:])
xoshi.y = binary.LittleEndian.Uint64(p[16:])
xoshi.z = binary.LittleEndian.Uint64(p[24:])
return n, nil
}
// Seed is a proxy to SeedInt64. This exists to satisfy the rand.Source
// interface.
func (xoshi *Xoshiro) Seed(x int64) {
SeedInt64(xoshi, x)
}
// Copy creates a copy of the generator.
func (xoshi *Xoshiro) Copy() Copier {
x := *xoshi
return &x
}
// Jump quickly advances the generator by 2**192 steps.
func (xoshi *Xoshiro) Jump() {
var w, x, y, z uint64
for _, j := range xoshiroJump {
for i := 0; i < 64; i++ {
if j&1 != 0 {
w ^= xoshi.w
x ^= xoshi.x
y ^= xoshi.y
z ^= xoshi.z
}
xoshi.Uint64()
j >>= 1
}
}
xoshi.w = w
xoshi.x = x
xoshi.y = y
xoshi.z = z
}
var xoshiroJump = [4]uint64{
0x76e15d3efefdcbbf, 0xc5004e441c522fb3, 0x77710069854ee241, 0x39109bb02acbe635,
}
// Reverse moves the generator backward one step.
func (xoshi *Xoshiro) Reverse() {
xa := xoshi.x
xa ^= xa << 17
xa ^= xa << 34
ya := xoshi.y
ya ^= ya << 17
ya ^= ya << 34
xoshi.z = bits.RotateLeft64(xoshi.z, 19)
xoshi.y = xoshi.w ^ xoshi.x
xoshi.w ^= xoshi.z
xoshi.x = xa ^ ya
xoshi.z ^= xoshi.x
xoshi.y ^= xoshi.z
}