-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.zp
347 lines (295 loc) · 10.8 KB
/
util.zp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
(define (id obj)
"take anything and return it as is.
params:
- obj: what to return; can be anything
complexity: O(1)
returns: <par>obj</par>"
obj)
(define (inf? obj)
"check whether <par>obj</par> is <zepto>inf</zepto>.
params:
- obj: the object to check
complexity: O(1)
returns: boolean"
(if (and (number? obj) (inexact? obj))
(= obj (* obj 10))
#f))
(define (flip func)
"take a function <par>func</par> and return a function that
applies the arguments to <par>func</par> in reverse. Assumes a binary function.
params:
- func: the function to change
complexity: O(1)
returns: the flipped function"
(lambda (arg1 arg2)
(func arg2 arg1)))
(define (curry f . args)
"curry a function <par>f</par> by providing any number of arguments.
It will return a function that takes any number of arguments and then
applies the first and second set of arguments together to <par>f</par>.
Example:
<zepto>
(define plus10 (curry + 10))
(plus10 40) ; 50
</zepto>
params:
- f: the function to curry
- args: the first set of arguments to apply to <par>f</par>
complexity: O(1)
returns: the curried function"
(lambda inner
(apply f (++ args inner))))
(define (compose f g . args)
"compose two functions <par>f</par> and <par>g</par> together.
If arguments are provided, it gets applied right away. If no arguments
are provided, a function is returned that takes any number of arguments,
calls <par>g</par> with them and then pipes it into <par>f</par>.
Example:
<zepto>
(define incrfirst (compose add1 head))
(incrfirst [1 2 3]) ; => 2
(compose sub1 list:last [4 5 6]) ; => 5
</zepto>
params:
- f: the outer function
- g: the inner function
- args: any number of arguments (optional); if provided, the composition gets evaluated right away
complexity: O(1)
returns: the composition of <par>f</par> and <par>g</par> or the applied version"
(let ((constructed (lambda args (f (apply g args)))))
(if (null? args)
constructed
(apply compose (cons constructed args)))))
(define (foldr func end l)
"fold right over a list <par>l</par> using <par>func</par> and an initial
accumulator <par>accum</par>.
params:
- func: the function used for folding
- accum: the initial accumulator
- l: the list to fold over
complexity: O(n*k) (where n is the length of the list and k is the complexity of <par>fun</par>)
returns: whatever <par>fun</par> reduces"
(if (list:null? l)
end
(func (list:car l) (foldr func end (list:cdr l)))))
(define (foldr1 func l)
"fold right over a list <par>l</par> using <par>func</par>. Assume the first element
of <par>l</par> is the valid accumulator.
params:
- func: the function used for folding
- l: the list to fold over
complexity: O(n*k) (where n is the length of the list and k is the complexity of <par>fun</par>)
returns: whatever <par>fun</par> reduces"
(foldr func (car l) (cdr l)))
(define (foldl1 func l)
"fold left over a list <par>l</par> using <par>func</par>. Assume the first element
of <par>l</par> is the valid accumulator.
params:
- func: the function used for folding
- l: the list to fold over
complexity: O(n*k) (where n is the length of the list and k is the complexity of <par>fun</par>)
returns: whatever <par>fun</par> reduces"
(foldl func (car l) (cdr l)))
(define (sum . l)
"calculate the sum of the values provided to <par>l</par>.
params:
- l: the values that should be summed (varargs)
complexity: O(n)
returns: the sum of all values in <par>l</par>"
(fold + 0 l))
(define (product . l)
"calculate the product of the values provided to <par>l</par>.
params:
- l: the values that should be multiplied (varargs)
complexity: O(n)
returns: the product of all values in <par>l</par>"
(fold * 1 l))
(define (for-each proc . lists)
"applies a function <par>proc</par> to a variable number of lists
and return a list of lists. Returns when the shortest list is traversed.
params:
- proc: the function to apply
- lists: a number of lists (varargs)
complexity: O(n*m*k) where n is the length of the shortest list, m is the number of lists, and k is the complexity of <par>k</par>
returns: a list of lists"
(define (unzip1-with-cdr . lists)
(unzip1-with-cdr-iterative lists '() '()))
(define (unzip1-with-cdr-iterative lists cars cdrs)
(if (null? lists)
(cons cars cdrs)
(let ((car1 (caar lists))
(cdr1 (cdar lists)))
(unzip1-with-cdr-iterative
(cdr lists)
(append cars car1)
(append cdrs cdr1)))))
(if (null? lists)
[]
(if (any? null? lists)
[]
(let* ((unz (apply unzip1-with-cdr lists))
(cars (car unz))
(cdrs (cdr unz)))
(cons
(apply proc cars)
(apply for-each (cons proc cdrs)))))))
(define (falsy? val)
"checks whether <par>val</par> is falsy, i.e. empty if it is a
collection, 0 if it is a number, and false if it is a boolean.
TODO: make this a protocol
params:
- val: the value to check
complexity: O(1)
returns: boolean"
(cond
((boolean? val) (not val))
((hash-map? val) (list:null? (hash:keys val)))
((list? val) (list:null? val))
((vector? val) (eqv? {} val))
((byte-vector? val) (eqv? #() val))
((string? val) (eqv? "" val))
((number? val) (eqv? 0 val))
(else #t)))
(define (truthy? val)
"checks whether <par>val</par> is truthy, i.e. not empty if it is a
collection, !0 if it is a number, and true if it is a boolean.
TODO: make this a protocol
params:
- val: the value to check
complexity: O(1)
returns: boolean"
(not (falsy? val)))
(define (constantly x)
"takes an argument <par>x</par> and returns a function that takes
any number of arguments and returns <par>x</par>.
params:
- x: the argument to return
complexity: O(1)
returns: a function that returns <par>x</par>"
(lambda args x))
(define (juxt . fs)
"takes a set of functions and returns a function that is the juxtaposition
of those functions. The returned function takes a variable number of args,
and returns a vector containing the result of applying each given function
to the args (left-to-right).
params:
- fs: the functions to juxtapose (varargs)
complexity: O(1)
returns: the juxtaposition of <par>fs</par>"
(lambda args (map ($ (apply % args)) fs)))
(define (memoize f)
"returns a memoized version of a referentially transparent function. The
memoized version of the function keeps a cache of the mapping from arguments
to results and, when calls with the same arguments are repeated often, has
higher performance at the expense of higher memory use.
Caveat: the arguments must be simple values.
params:
- f: the function to memoize
complexity: O(1)
returns: a memoized version of <par>f</par>"
(let ((cache #{}))
(lambda args
(let ((sargs (make-simple-list args)))
(if (in? cache sargs)
(cache sargs)
(let ((res (apply f args)))
(begin
(hash:set! cache sargs res)
res)))))))
(define (partition n c)
"returns a list of lists of <par>n</par> items each, throws away the rest.
params:
- n: the size of the slices
- c: the source collection (can be any collection type)
complexity: O(n)
returns: a list of lists"
(define (internal acc tmp src)
(cond
((null? src) acc)
((eq? (length tmp) n) (internal (+= acc tmp) (list (car src)) (cdr src)))
(else (internal acc (++ tmp (car src)) (cdr src)))))
(internal [] [] c))
(define (partition-all n c)
"returns a list of lists of <par>n</par> items each, does not throw away the rest.
params:
- n: the size of the slices
- c: the source collection (can be any collection type)
complexity: O(n)
returns: a list of lists"
(define (internal acc tmp src)
(cond
((null? src) (+= acc tmp))
((eq? (length tmp) n) (internal (+= acc tmp) (list (car src)) (cdr src)))
(else (internal acc (++ tmp (car src)) (cdr src)))))
(internal [] [] c))
(define (callable? obj)
"check whether <par>obj</par> is callable.
params:
- obj: the object to check
complexity: O(1)
returns: a boolean"
(or (function? obj) (primitive? obj)))
(define (ignoring pred f)
"takes a predicate and a function and returns a function
that filters out any argument to f that matches pred before
applying them.
params:
- pred: the predicate
- f: the function
complexity: O(1)
returns: a new function as described above"
(lambda args
(apply f (filter ($ (not (pred %))) args))))
(define (ignoring-nils f)
"a specialized version of <par>ignoring</par> that ignores nil values.
params:
- f: the function
complexity: O(1)
returns: a new function as described in the documentation of <par>ignoring</par>"
(ignoring nil? f))
(define (rate-limited f period)
"creates a version of the function <par>f</par> which 'refuses' to be called too
frequently. If it has successfully been called in the last <par>period</par>
milliseconds, calls to it will return nil; if no calls have succeeded in that
period, it will be called with the args provided.
params:
- f: the function
- period: the number of milliseconds
complexity: O(1)
returns: a new function as described above"
(let ((last-call 0))
(lambda args
(let* ((time (unix-timestamp))
(cur (/ (+ (* (car time) 1000000000) (cadr time)) 1000000)))
(if (< (+ period last-call) cur)
(begin
(set! last-call cur)
(apply f args)))))))
(define (unfold next seed)
"Traditionally unfold is the 'opposite of reduce': it turns a single
seed value into a sequence of output values.
<par>next</par> is a function that operates on a <par>seed</par>: it should
return a pair, <zepto>[value new-seed]</zepto>; the value half of the pair is
inserted into the resulting list, while the new seed is used to
continue unfolding. Notably, the value is never passed as an
argument to <par>next</par>. If <zepto>nil</zepto> is returned instead of a pair,
the resulting sequence will terminate.
Example:
<zepto>
(define (fibs-to n)
(unfold (lambda (a b)
(if (> b n)
(nil)
(list a (list b (+ a b)))))
[0 1]))
</zepto>
params:
- next: the function that produces values
- seed: the original seeding value
complexity: O(n*k) where k is the complexity of <par>next</par>
returns: a list of the values produced by <par>next</par>"
(let loop ((acc [])
(nval (apply next seed)))
(if (nil? nval)
acc
(loop (++ acc (car nval)) (apply next (cadr nval))))))