-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcv_portion.py
60 lines (44 loc) · 1.57 KB
/
cv_portion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import joblib
import numpy as np
import argparse
from label_propagation import MyLabelSpreading
parser = argparse.ArgumentParser()
parser.add_argument("--option", help="use which dataset", default='16000oneliners')
parser.add_argument('--label_portion', help='proportion of labels', type=float, default=0.1)
args = parser.parse_args()
option = args.option
label_portion = args.label_portion
if option is '16000oneliners':
win_size = 5
cp_rank = 10
neighbor = 50
elif option is 'Pun':
win_size = 5
cp_rank = 10
neighbor = 50
acc_list = []
pre_list = []
rec_list = []
f1_list = []
for counter, seed in enumerate([345, 543, 789, 987, 567, 765, 123, 321, 456, 654]):
# load data
os.system('python load_data.py --option {:s} --label_portion {:f} --seed {:d}' \
.format(option, label_portion, seed))
# doc2vec
os.system('python doc2vec.py --option {:s} --win_size {:d} --cp_rank {:d}' \
.format(option, win_size, cp_rank))
acc, pre, rec, f1 = MyLabelSpreading(option, neighbor)
acc_list.append(acc)
pre_list.append(pre)
rec_list.append(rec)
f1_list.append(f1)
print('accuracy mean: %f' % np.mean(acc_list))
print('accuracy std: %f' % np.std(acc_list))
print('precision mean: %f' % np.mean(pre_list))
print('precision std: %f' % np.std(pre_list))
print('recall mean: %f' % np.mean(rec_list))
print('recall std: %f' % np.std(rec_list))
print('f1 mean: %f' % np.mean(f1_list))
print('f1 std: %f' % np.std(f1_list))
joblib.dump([acc_list, pre_list, rec_list, f1_list], option + str(label_portion) + '.pkl')