forked from 5kg/char-rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.lua
266 lines (238 loc) · 10.8 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
--[[
This file trains a character-level multi-layer RNN on text data
Code is based on implementation in
https://github.com/oxford-cs-ml-2015/practical6
but modified to have multi-layer support, GPU support, as well as
many other common model/optimization bells and whistles.
The practical6 code is in turn based on
https://github.com/wojciechz/learning_to_execute
which is turn based on other stuff in Torch, etc... (long lineage)
]]--
require 'torch'
require 'nn'
require 'nngraph'
require 'optim'
require 'lfs'
require 'util.OneHot'
require 'util.misc'
local CharSplitLMMinibatchLoader = require 'util.CharSplitLMMinibatchLoader'
local model_utils = require 'util.model_utils'
local LSTM = require 'model.LSTM'
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a character-level language model')
cmd:text()
cmd:text('Options')
-- data
cmd:option('-data_dir','data/tinyshakespeare','data directory. Should contain the file input.txt with input data')
-- model params
cmd:option('-rnn_size', 100, 'size of LSTM internal state')
cmd:option('-num_layers', 2, 'number of layers in the LSTM')
cmd:option('-model', 'lstm', 'for now only lstm is supported. keep fixed')
-- optimization
cmd:option('-learning_rate',2e-3,'learning rate')
cmd:option('-decay_rate',0.95,'decay rate for rmsprop')
cmd:option('-dropout',0,'dropout to use just before classifier. 0 = no dropout')
cmd:option('-seq_length',50,'number of timesteps to unroll for')
cmd:option('-batch_size',100,'number of sequences to train on in parallel')
cmd:option('-max_epochs',30,'number of full passes through the training data')
cmd:option('-grad_clip',5,'clip gradients at')
cmd:option('-train_frac',0.95,'fraction of data that goes into train set')
cmd:option('-val_frac',0.05,'fraction of data that goes into validation set')
-- note: test_frac will be computed as (1 - train_frac - val_frac)
-- bookkeeping
cmd:option('-seed',123,'torch manual random number generator seed')
cmd:option('-print_every',1,'how many steps/minibatches between printing out the loss')
cmd:option('-eval_val_every',1000,'every how many iterations should we evaluate on validation data?')
cmd:option('-checkpoint_dir', 'cv', 'output directory where checkpoints get written')
cmd:option('-savefile','lstm','filename to autosave the checkpont to. Will be inside checkpoint_dir/')
-- GPU/CPU
cmd:option('-gpuid',0,'which gpu to use. -1 = use CPU')
cmd:text()
-- parse input params
opt = cmd:parse(arg)
torch.manualSeed(opt.seed)
-- train / val / test split for data, in fractions
local test_frac = math.max(0, 1 - opt.train_frac - opt.val_frac)
local split_sizes = {opt.train_frac, opt.val_frac, test_frac}
if opt.gpuid >= 0 then
print('using CUDA on GPU ' .. opt.gpuid .. '...')
require 'cutorch'
require 'cunn'
cutorch.setDevice(opt.gpuid + 1) -- note +1 to make it 0 indexed! sigh lua
end
-- create the data loader class
local loader = CharSplitLMMinibatchLoader.create(opt.data_dir, opt.batch_size, opt.seq_length, split_sizes)
local vocab_size = loader.vocab_size -- the number of distinct characters
print('vocab size: ' .. vocab_size)
-- make sure output directory exists
if not path.exists(opt.checkpoint_dir) then lfs.mkdir(opt.checkpoint_dir) end
-- define the model: prototypes for one timestep, then clone them in time
protos = {}
protos.embed = OneHot(vocab_size)
print('creating an LSTM with ' .. opt.num_layers .. ' layers')
protos.rnn = LSTM.lstm(vocab_size, opt.rnn_size, opt.num_layers, opt.dropout)
-- the initial state of the cell/hidden states
init_state = {}
for L=1,opt.num_layers do
local h_init = torch.zeros(opt.batch_size, opt.rnn_size)
if opt.gpuid >=0 then h_init = h_init:cuda() end
table.insert(init_state, h_init:clone())
table.insert(init_state, h_init:clone())
end
state_predict_index = #init_state -- index of blob to make prediction from
-- classifier on top
protos.softmax = nn.Sequential():add(nn.Linear(opt.rnn_size, vocab_size)):add(nn.LogSoftMax())
-- training criterion (negative log likelihood)
protos.criterion = nn.ClassNLLCriterion()
-- ship the model to the GPU if desired
if opt.gpuid >= 0 then
for k,v in pairs(protos) do v:cuda() end
end
-- put the above things into one flattened parameters tensor
params, grad_params = model_utils.combine_all_parameters(protos.embed, protos.rnn, protos.softmax)
params:uniform(-0.08, 0.08)
print('number of parameters in the model: ' .. params:nElement())
-- make a bunch of clones after flattening, as that reallocates memory
clones = {}
for name,proto in pairs(protos) do
print('cloning ' .. name)
clones[name] = model_utils.clone_many_times(proto, opt.seq_length, not proto.parameters)
end
-- evaluate the loss over an entire split
function eval_split(split_index, max_batches)
print('evaluating loss over split index ' .. split_index)
local n = loader.split_sizes[split_index]
if max_batches ~= nil then n = math.min(max_batches, n) end
loader:reset_batch_pointer(split_index) -- move batch iteration pointer for this split to front
local loss = 0
local rnn_state = {[0] = init_state}
for i = 1,n do -- iterate over batches in the split
-- fetch a batch
local x, y = loader:next_batch(split_index)
if opt.gpuid >= 0 then -- ship the input arrays to GPU
-- have to convert to float because integers can't be cuda()'d
x = x:float():cuda()
y = y:float():cuda()
end
-- forward pass
for t=1,opt.seq_length do
local embedding = clones.embed[t]:forward(x[{{}, t}])
clones.rnn[t]:evaluate() -- for dropout proper functioning
rnn_state[t] = clones.rnn[t]:forward{embedding, unpack(rnn_state[t-1])}
if type(rnn_state[t]) ~= 'table' then rnn_state[t] = {rnn_state[t]} end
local prediction = clones.softmax[t]:forward(rnn_state[t][state_predict_index])
loss = loss + clones.criterion[t]:forward(prediction, y[{{}, t}])
end
-- carry over lstm state
rnn_state[0] = rnn_state[#rnn_state]
print(i .. '/' .. n .. '...')
end
loss = loss / opt.seq_length / n
return loss
end
-- do fwd/bwd and return loss, grad_params
local init_state_global = clone_list(init_state)
function feval(x)
if x ~= params then
params:copy(x)
end
grad_params:zero()
------------------ get minibatch -------------------
local x, y = loader:next_batch(1)
if opt.gpuid >= 0 then -- ship the input arrays to GPU
-- have to convert to float because integers can't be cuda()'d
x = x:float():cuda()
y = y:float():cuda()
end
------------------- forward pass -------------------
local embeddings = {} -- input embeddings
local rnn_state = {[0] = init_state_global}
local predictions = {} -- softmax outputs
local loss = 0
for t=1,opt.seq_length do
embeddings[t] = clones.embed[t]:forward(x[{{}, t}])
clones.rnn[t]:training() -- make sure we are in correct mode (this is cheap, sets flag)
rnn_state[t] = clones.rnn[t]:forward{embeddings[t], unpack(rnn_state[t-1])}
-- the following line is needed because nngraph tries to be clever
if type(rnn_state[t]) ~= 'table' then rnn_state[t] = {rnn_state[t]} end
predictions[t] = clones.softmax[t]:forward(rnn_state[t][state_predict_index])
loss = loss + clones.criterion[t]:forward(predictions[t], y[{{}, t}])
end
loss = loss / opt.seq_length
------------------ backward pass -------------------
local dembeddings = {}
-- initialize gradient at time t to be zeros (there's no influence from future)
local drnn_state = {[opt.seq_length] = clone_list(init_state, true)} -- true also zeros the clones
for t=opt.seq_length,1,-1 do
-- backprop through loss, and softmax/linear
local doutput_t = clones.criterion[t]:backward(predictions[t], y[{{}, t}])
drnn_state[t][state_predict_index] = clones.softmax[t]:backward(rnn_state[t][state_predict_index], doutput_t)
-- backprop through LSTM timestep
local drnn_statet_passin = drnn_state[t]
-- we have to be careful with nngraph again
if #(rnn_state[t]) == 1 then drnn_statet_passin = drnn_state[t][1] end
local dlst = clones.rnn[t]:backward({embeddings[t], unpack(rnn_state[t-1])}, drnn_statet_passin)
drnn_state[t-1] = {}
for k,v in pairs(dlst) do
if k == 1 then
dembeddings[t] = v
else
-- note we do k-1 because first item is dembeddings, and then follow the
-- derivatives of the state, starting at index 2. I know...
drnn_state[t-1][k-1] = v
end
end
-- backprop through embeddings
clones.embed[t]:backward(x[{{}, t}], dembeddings[t])
end
------------------------ misc ----------------------
-- transfer final state to initial state (BPTT)
init_state_global = rnn_state[#rnn_state] -- NOTE: I don't think this needs to be a clone, right?
-- clip gradient element-wise
grad_params:clamp(-opt.grad_clip, opt.grad_clip)
return loss, grad_params
end
-- start optimization here
train_losses = {}
val_losses = {}
local optim_state = {learningRate = opt.learning_rate, alpha = opt.decay_rate}
local iterations = opt.max_epochs * loader.ntrain
local iterations_per_epoch = loader.ntrain
local loss0 = nil
for i = 1, iterations do
local epoch = i / loader.ntrain
local timer = torch.Timer()
local _, loss = optim.rmsprop(feval, params, optim_state)
local time = timer:time().real
local train_loss = loss[1] -- the loss is inside a list, pop it
train_losses[i] = train_loss
-- every now and then or on last iteration
if i % opt.eval_val_every == 0 or i == iterations then
-- evaluate loss on validation data
local val_loss = eval_split(2) -- 2 = validation
val_losses[i] = val_loss
local savefile = string.format('%s/lm_%s_epoch%.2f_%.4f.t7', opt.checkpoint_dir, opt.savefile, epoch, val_loss)
print('saving checkpoint to ' .. savefile)
local checkpoint = {}
checkpoint.protos = protos
checkpoint.opt = opt
checkpoint.train_losses = train_losses
checkpoint.val_loss = val_loss
checkpoint.val_losses = val_losses
checkpoint.i = i
checkpoint.epoch = epoch
checkpoint.vocab = loader.vocab_mapping
torch.save(savefile, checkpoint)
end
if i % opt.print_every == 0 then
print(string.format("%d/%d (epoch %.3f), train_loss = %6.8f, grad/param norm = %6.4e, time/batch = %.2fs", i, iterations, epoch, train_loss, grad_params:norm() / params:norm(), time))
end
if i % 10 == 0 then collectgarbage() end
-- handle early stopping if things are going really bad
if loss0 == nil then loss0 = loss[1] end
if loss[1] > loss0 * 3 then
print('loss is exploding, aborting.')
break -- halt
end
end