diff --git a/README.md b/README.md index 15a1717..ee76877 100644 --- a/README.md +++ b/README.md @@ -93,6 +93,10 @@ model.fit(X_measured, y_measured, sgd_epochs=5000, sgd_lr=5e-3, num_warmup=1000, posterior_mean, posterior_var = model.predict(X_domain) ``` +![hsk](https://github.com/user-attachments/assets/5a619361-74c0-4d03-9b1a-4aa995f1c540) + +See example [here](https://github.com/ziatdinovmax/NeuroBayes/blob/main/examples/heteroskedastic.ipynb). + Sometimes in scientific and engineering applciations, domain experts may possess prior knowledge about how noise level varies with inputs. NeuroBayes enables the integration of such knowledge through a noise model-based heteroskedastic Bayesian Neural Network (BNN). ```python3 @@ -111,10 +115,7 @@ architecture = nb.FlaxMLP(hidden_dims, target_dim) model = nb.VarianceModelHeteroskedasticBNN(architecture, noise_model, noise_model_prior) model.fit(X_measured, y_measured, num_warmup=1000, num_samples=1000) ``` - -![hsk](https://github.com/user-attachments/assets/5a619361-74c0-4d03-9b1a-4aa995f1c540) - -See example [here](https://github.com/ziatdinovmax/NeuroBayes/blob/main/examples/heteroskedastic.ipynb). +See example [here](https://github.com/ziatdinovmax/NeuroBayes/blob/main/examples/heteroskedastic_noisemodel.ipynb). ### Pre-trained priors