-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalyze_results.py
220 lines (189 loc) · 8.11 KB
/
analyze_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import pandas as pd
import numpy as np
import logging
from pathlib import Path
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import json
from sklearn.manifold import TSNE
from sklearn.metrics import confusion_matrix, roc_curve, auc
import pytorch_lightning as pl
from torch.utils.data import DataLoader
# 设置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class ResultAnalyzer:
def __init__(self, pred_file: str = 'data/output/tianchi_mobile_recommendation_predict.csv'):
"""初始化结果分析器"""
self.pred_file = pred_file
self.output_dir = Path('data/output/analysis')
self.output_dir.mkdir(parents=True, exist_ok=True)
def analyze_predictions(self):
"""分析预测结果"""
try:
# 读取预测结果
logger.info(f"Reading predictions from {self.pred_file}")
self.pred_df = pd.read_csv(self.pred_file)
# 运行所有分析
self.basic_analysis()
self.distribution_analysis()
self.visualization_analysis()
# 保存结果
self.save_results()
except Exception as e:
logger.error(f"Error analyzing predictions: {str(e)}")
raise
def basic_analysis(self):
"""基本统计分析"""
self.basic_stats = {
'total_predictions': len(self.pred_df),
'unique_users': self.pred_df['user_id'].nunique(),
'unique_items': self.pred_df['item_id'].nunique(),
'avg_items_per_user': len(self.pred_df) / self.pred_df['user_id'].nunique(),
'memory_usage_mb': self.pred_df.memory_usage(deep=True).sum() / 1024**2
}
logger.info("\nBasic Statistics:")
for key, value in self.basic_stats.items():
logger.info(f"{key}: {value:,.2f}")
def distribution_analysis(self):
"""分布统计分析"""
# 用户推荐分布
self.user_rec_counts = self.pred_df['user_id'].value_counts()
self.item_rec_counts = self.pred_df['item_id'].value_counts()
self.distribution_stats = {
'user_recommendations': {
'min': int(self.user_rec_counts.min()),
'max': int(self.user_rec_counts.max()),
'mean': float(self.user_rec_counts.mean()),
'median': float(self.user_rec_counts.median()),
'std': float(self.user_rec_counts.std())
},
'item_recommendations': {
'min': int(self.item_rec_counts.min()),
'max': int(self.item_rec_counts.max()),
'mean': float(self.item_rec_counts.mean()),
'median': float(self.item_rec_counts.median()),
'std': float(self.item_rec_counts.std())
}
}
logger.info("\nDistribution Analysis:")
logger.info(f"User recommendation distribution: {self.distribution_stats['user_recommendations']}")
logger.info(f"Item recommendation distribution: {self.distribution_stats['item_recommendations']}")
def visualization_analysis(self):
"""可视化分析"""
# 创建图形
plt.style.use('seaborn')
fig = plt.figure(figsize=(15, 10))
# 1. 用户推荐分布
plt.subplot(221)
sns.histplot(self.user_rec_counts, bins=30)
plt.title('User Recommendation Distribution')
plt.xlabel('Number of Recommendations')
plt.ylabel('Number of Users')
# 2. 商品推荐分布
plt.subplot(222)
sns.histplot(self.item_rec_counts, bins=30)
plt.title('Item Recommendation Distribution')
plt.xlabel('Number of Times Recommended')
plt.ylabel('Number of Items')
# 3. 推荐密度图
plt.subplot(223)
sns.kdeplot(self.user_rec_counts)
plt.title('User Recommendation Density')
plt.xlabel('Number of Recommendations')
# 4. 累积分布
plt.subplot(224)
plt.plot(np.sort(self.user_rec_counts),
np.linspace(0, 1, len(self.user_rec_counts)))
plt.title('Cumulative Distribution')
plt.xlabel('Number of Recommendations')
plt.ylabel('Cumulative Proportion')
plt.tight_layout()
plt.savefig(self.output_dir / 'recommendation_analysis.png')
plt.close()
def analyze_model_outputs(self, model_outputs: Dict[str, torch.Tensor]):
"""分析模型输出"""
# 提取模型输出
embeddings = model_outputs['embeddings'].cpu().numpy()
predictions = model_outputs['predictions'].cpu().numpy()
labels = model_outputs['labels'].cpu().numpy()
# 1. t-SNE可视化
tsne = TSNE(n_components=2, random_state=42)
embeddings_2d = tsne.fit_transform(embeddings)
plt.figure(figsize=(10, 8))
scatter = plt.scatter(embeddings_2d[:, 0], embeddings_2d[:, 1],
c=labels, cmap='viridis', alpha=0.5)
plt.colorbar(scatter)
plt.title('t-SNE Visualization of Embeddings')
plt.savefig(self.output_dir / 'embeddings_tsne.png')
plt.close()
# 2. ROC曲线
fpr, tpr, _ = roc_curve(labels, predictions)
roc_auc = auc(fpr, tpr)
plt.figure(figsize=(8, 8))
plt.plot(fpr, tpr, color='darkorange', lw=2,
label=f'ROC curve (AUC = {roc_auc:.2f})')
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc='lower right')
plt.savefig(self.output_dir / 'roc_curve.png')
plt.close()
# 3. 混淆矩阵
conf_matrix = confusion_matrix(labels, predictions > 0.5)
plt.figure(figsize=(8, 8))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues')
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.savefig(self.output_dir / 'confusion_matrix.png')
plt.close()
def analyze_training_history(self, history_file: str):
"""分析训练历史"""
with open(history_file) as f:
history = json.load(f)
# 1. 损失曲线
plt.figure(figsize=(10, 6))
plt.plot(history['train_loss'], label='Training Loss')
plt.plot(history['val_loss'], label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training History')
plt.legend()
plt.savefig(self.output_dir / 'training_history.png')
plt.close()
# 2. 指标趋势
metrics = ['precision', 'recall', 'f1']
plt.figure(figsize=(12, 4))
for i, metric in enumerate(metrics, 1):
plt.subplot(1, 3, i)
plt.plot(history[f'train_{metric}'], label=f'Train {metric}')
plt.plot(history[f'val_{metric}'], label=f'Val {metric}')
plt.title(f'{metric.capitalize()} History')
plt.xlabel('Epoch')
plt.ylabel(metric)
plt.legend()
plt.tight_layout()
plt.savefig(self.output_dir / 'metrics_history.png')
plt.close()
def save_results(self):
"""保存分析结果"""
results = {
'basic_statistics': self.basic_stats,
'distribution_statistics': self.distribution_stats,
'analysis_timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
with open(self.output_dir / 'analysis_results.json', 'w') as f:
json.dump(results, f, indent=4)
logger.info(f"Analysis results saved to {self.output_dir}")
if __name__ == "__main__":
analyzer = ResultAnalyzer()
analyzer.analyze_predictions()
# 如果有训练历史文件
if Path('data/output/training_history.json').exists():
analyzer.analyze_training_history('data/output/training_history.json')