We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
The code is as follows
import torch from torchvision import models from torch.utils.data import DataLoader # 有 GPU 就用 GPU,没有就用 CPU device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print('device', device) import argparse from models import NeuralRecon from config import cfg, update_config parser = argparse.ArgumentParser(description='NeuralRecon Real-time Demo') parser.add_argument('--cfg', help='experiment configure file name', default='/mnt/workspace/NeuralRecon/config/demo.yaml', #required=True, type=str) parser.add_argument('opts', help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER) # parse arguments and check args = parser.parse_args(args=[]) update_config(cfg, args) model = NeuralRecon(cfg).cuda().eval() model = torch.nn.DataParallel(model, device_ids=[0]) state_dict = torch.load('/mnt/workspace/NeuralRecon/checkpoint/model_000047.ckpt') model.load_state_dict(state_dict['model'], strict=False) from datasets import find_dataset_def, transforms transform = [transforms.ResizeImage((640, 480)), transforms.ToTensor(), transforms.RandomTransformSpace( [96, 96, 96], 0.04, random_rotation=False, random_translation=False, paddingXY=0, paddingZ=0, max_epoch=991), transforms.IntrinsicsPoseToProjection(9, 9)] transforms = transforms.Compose(transform) ARKitDataset = find_dataset_def('demo') test_dataset = ARKitDataset('/mnt/workspace/NeuralRecon/data/2023-08-25T08-43-54', "test", transforms, 9, len([0, 0, 0]) - 1) data_loader = DataLoader(test_dataset, 1, shuffle=False, num_workers=1, drop_last=False) #for frag_idx, sample in enumerate(data_loader): # print(sample) enum_fruits = list(enumerate(data_loader)) frag_idx, sample = enum_fruits[0] frag_len = len(data_loader) save_scene = (True and frag_idx == frag_len - 1) or False or False frag_idx, sample = enum_fruits[0] outputs, loss_dict = model(sample, save_scene) with torch.no_grad(): torch.onnx.export( model.module, # 要转换的模型 sample,save_scene, # 模型的任意一组输入 '/mnt/workspace/NeuralRecon/NeuralRecon.onnx', # 导出的 ONNX 文件名 opset_version=11, # ONNX 算子集版本 input_names=['sample','save_scene'], # 输入 Tensor 的名称(自己起名字) output_names=['outputs','loss_dict'] # 输出 Tensor 的名称(自己起名字) )
The text was updated successfully, but these errors were encountered:
No branches or pull requests
The code is as follows
The text was updated successfully, but these errors were encountered: