-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_mbd.py
253 lines (218 loc) · 10.6 KB
/
train_mbd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import yaml
import random
import torch
import torchmetrics
import time
import numpy as np
import torch.distributed as dist
from datetime import datetime
from argparse import ArgumentParser
from data.flow_viz import trend_plus_vis
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from tensorboardX import SummaryWriter
from model.MBD import MBD
from model.utils import AverageMeter
from os.path import join
from logger import Logger
def init_seeds(seed=0):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def train(local_rank, configs, log_dir):
# Preparation and backup
device = torch.device("cuda", args.local_rank)
torch.backends.cudnn.benchmark = True
if rank == 0:
writer = SummaryWriter(log_dir)
configs_bp = join(log_dir, 'cfg.yaml')
with open(configs_bp, 'w') as f:
yaml.dump(configs, f)
else:
writer = None
step = 0
num_eval = 0
# model init
model = MBD(local_rank=local_rank, configs=configs)
# dataset init
dataset_args = configs['dataset_args']
train_dataset = BDDataset(set_type='train', **dataset_args)
train_sampler = DistributedSampler(train_dataset)
train_loader = DataLoader(train_dataset,
batch_size=configs['train_batch_size'],
num_workers=configs['num_workers'],
pin_memory=True,
drop_last=True,
sampler=train_sampler)
valid_dataset = BDDataset(set_type='valid', **dataset_args)
valid_loader = DataLoader(valid_dataset,
batch_size=configs['valid_batch_size'],
num_workers=configs['num_workers'],
pin_memory=True)
# training looping
step_per_epoch = len(train_loader)
time_stamp = time.time()
for epoch in range(configs['epoch']):
torch.cuda.empty_cache()
train_sampler.set_epoch(epoch)
for i, tensor in enumerate(train_loader):
# Record time after loading data
data_time_interval = time.time() - time_stamp
time_stamp = time.time()
# Update model
tensor['inp'] = tensor['inp'].to(device) # (b, 1, 3, h, w)
tensor['gt'] = tensor['gt'].to(device) # (b, num_gts, 3, h, w)
tensor['trend'] = tensor['trend'].to(device) # (b, 1, 2, h, w)
gt_flow_ratio = 1 - epoch / (configs['epoch'] - 1)
hybrid_flag = np.random.choice(np.arange(0, 2), p=[1 - gt_flow_ratio, gt_flow_ratio])
out_tensor = model.update(inp_tensor=tensor, hybrid_flag=hybrid_flag, training=True)
loss = out_tensor['loss']
# Record time after updating model
train_time_interval = time.time() - time_stamp
time_stamp = time.time()
# Print training info
if step % 100 == 0:
if rank == 0:
writer.add_scalar('learning_rate', model.get_lr(), step)
writer.add_scalar('train/loss', loss.item(), step)
msg = 'epoch: {:>3}, batch: [{:>5}/{:>5}], time: {:.2f} + {:.2f} sec, loss: {:.5f}'
msg = msg.format(epoch + 1,
i + 1,
step_per_epoch,
data_time_interval,
train_time_interval,
loss.item())
logger(msg, prefix='[train]')
if (rank == 0) and (step % 500 == 0):
inp_img = out_tensor['inp_img'] # inp_img shape (b, c, h, w)
trend_img = out_tensor['trend_img'] # trend_img shape (b, 2, h, w)
pred_imgs = out_tensor['pred_imgs'] # pred_imgs shape (b, num_gts, 3, h, w)
gt_imgs = out_tensor['gt_imgs'] # gt_imgs shape (b, num_gts, 3, h, w)
# Prepare recorded results
inp_img = inp_img.permute(0, 2, 3, 1).cpu().detach().numpy().astype(np.uint8)
trend_img = trend_img.permute(0, 2, 3, 1).cpu().detach().numpy()
trend_img_rgb = []
for item in trend_img:
trend_img_rgb.append(trend_plus_vis(item))
b, num_gts, c, h, w = pred_imgs.shape
pred_imgs = pred_imgs.permute(0, 3, 1, 4, 2).reshape(b, h, num_gts * w, c)
pred_imgs = pred_imgs.cpu().detach().numpy().astype(np.uint8)
gt_imgs = gt_imgs.permute(0, 3, 1, 4, 2).reshape(b, h, num_gts * w, c)
gt_imgs = gt_imgs.cpu().detach().numpy().astype(np.uint8)
# Record each sample results in the batch
for j in range(b):
# Record predicted images pair
cat_pred_imgs = np.concatenate([inp_img[j], trend_img_rgb[j], pred_imgs[j]],
axis=1) # (h, (2 + num_gts) * w, c)
cat_gt_imgs = np.concatenate([inp_img[j], trend_img_rgb[j], gt_imgs[j]],
axis=1) # (h, (2 + num_gts) * w, c)
cat_imgs = np.concatenate([cat_gt_imgs, cat_pred_imgs], axis=0)
writer.add_image('train/imgs_results_{}'.format(j), cat_imgs, step, dataformats='HWC')
# Ending of a batch
step += 1
# Ending of an epoch
num_eval += 1
if num_eval % 5 == 0:
evaluate(model, valid_loader, num_eval, local_rank, writer)
if rank == 0:
model.save_model(log_dir)
if num_eval % 5 == 0:
model.save_model(log_dir, num_eval)
model.scheduler_step()
dist.barrier()
@torch.no_grad()
def evaluate(model, valid_loader, num_eval, local_rank, writer):
# Preparation
torch.cuda.empty_cache()
device = torch.device("cuda", local_rank)
loss_meter = AverageMeter()
psnr_meter = AverageMeter()
ssim_meter = AverageMeter()
time_stamp = time.time()
# One epoch validation
random_idx = random.randint(0, len(valid_loader))
for i, tensor in enumerate(valid_loader):
tensor['inp'] = tensor['inp'].to(device) # (b, 1, 3, h, w)
tensor['gt'] = tensor['gt'].to(device) # (b, num_gts, 3, h, w)
tensor['trend'] = tensor['trend'].to(device) # (b, 1, 2, h, w)
out_tensor = model.update(inp_tensor=tensor, training=False)
pred_imgs = out_tensor['pred_imgs'] # pred_imgs shape (b, num_gts, 3, h, w)
gt_imgs = out_tensor['gt_imgs'] # gt_imgs shape (b, num_gts, 3, h, w)
loss = out_tensor['loss']
# Record loss and metrics
pred_imgs = pred_imgs.detach()
gt_imgs = gt_imgs.detach()
b, num_gts, c, h, w = pred_imgs.shape
psnr_val = torchmetrics.functional.psnr(pred_imgs.reshape(num_gts * b, c, h, w),
gt_imgs.reshape(num_gts * b, c, h, w))
ssim_val = torchmetrics.functional.ssim(pred_imgs.reshape(num_gts * b, c, h, w),
gt_imgs.reshape(num_gts * b, c, h, w))
psnr_meter.update(psnr_val, num_gts * b)
ssim_meter.update(ssim_val, num_gts * b)
loss_meter.update(loss.item(), pred_imgs.shape[0])
# Record image results
if rank == 0 and i == random_idx:
inp_img = out_tensor['inp_img'] # inp_img shape (b, c, h, w)
inp_img = inp_img.permute(0, 2, 3, 1).cpu().detach().numpy().astype(np.uint8)
trend_img = out_tensor['trend_img'] # trend_img shape (b, 2, h, w)
trend_img = trend_img.permute(0, 2, 3, 1).cpu().detach().numpy()
trend_img_rgb = []
for item in trend_img:
trend_img_rgb.append(trend_plus_vis(item))
pred_imgs = pred_imgs.permute(0, 3, 1, 4, 2).reshape(b, h, num_gts * w, c)
pred_imgs = pred_imgs.cpu().numpy().astype(np.uint8)
gt_imgs = gt_imgs.permute(0, 3, 1, 4, 2).reshape(b, h, num_gts * w, c)
gt_imgs = gt_imgs.cpu().numpy().astype(np.uint8)
for j in range(b):
# Record predicted images pair
cat_pred_imgs = np.concatenate([inp_img[j], trend_img_rgb[j], pred_imgs[j]],
axis=1) # (h, (2 + num_gts) * w, c)
cat_gt_imgs = np.concatenate([inp_img[j], trend_img_rgb[j], gt_imgs[j]],
axis=1) # (h, (2 + num_gts) * w, c)
cat_imgs = np.concatenate([cat_gt_imgs, cat_pred_imgs], axis=0)
writer.add_image('valid/imgs_results_{}'.format(j), cat_imgs, num_eval, dataformats='HWC')
# Ending of validation
eval_time_interval = time.time() - time_stamp
if rank == 0:
writer.add_scalar('valid/loss', loss_meter.avg, num_eval)
writer.add_scalar('valid/psnr', psnr_meter.avg, num_eval)
writer.add_scalar('valid/ssim', ssim_meter.avg, num_eval)
msg = 'eval time: {} sec, loss: {:.5f}, psnr: {:.5f}, ssim: {:.5f}'.format(
eval_time_interval, loss_meter.avg, psnr_meter.avg, ssim_meter.avg
)
logger(msg, prefix='[valid]')
if __name__ == '__main__':
# load args & configs
parser = ArgumentParser(description='Blur Decomposition')
parser.add_argument('--local_rank', default=0, type=int, help='local rank')
parser.add_argument('--config', default='./configs/cfg.yaml', help='path of config')
parser.add_argument('--log_dir', default='log', help='path of log')
parser.add_argument('--verbose', action='store_true', help='whether to print out logs')
args = parser.parse_args()
with open(args.config) as f:
configs = yaml.full_load(f)
# Import blur decomposition dataset
is_gen_blur = True
for root_dir in configs['dataset_args']['root_dir']:
if 'b-aist++' in root_dir:
is_gen_blur = False
if is_gen_blur:
from data.dataset import GenBlur as BDDataset
else:
from data.dataset import BAistPP as BDDataset
# DDP init
dist.init_process_group(backend="nccl")
torch.cuda.set_device(args.local_rank)
rank = dist.get_rank()
init_seeds(seed=rank)
# Logger init
if rank == 0:
logger = Logger(file_path=join(args.log_dir, 'log_{}.txt'.format(datetime.now().strftime('%Y_%m_%d_%H_%M_%S'))),
verbose=args.verbose)
# Training model
train(local_rank=args.local_rank,
configs=configs,
log_dir=args.log_dir)
# Tear down the process group
dist.destroy_process_group()