-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathvideo_inference.py
67 lines (61 loc) · 2.3 KB
/
video_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import cv2
import os
from os.path import exists, dirname
import argparse
from model import Model
from para import Parameter
import torch
import torch.nn as nn
from data.utils import prepare, prepare_reverse
from data.distortion_prior import distortion_map
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument('--src', type=str, required=True, help='the path of input video')
parser.add_argument('--dst', type=str, required=True, help='the path of output video')
parser.add_argument('--checkpoint', type=str, required=True, help='the path of JCD checkpoint')
args = parser.parse_args()
def inp_pre(img, h, w):
# img = cv2.resize(img, (w, h), interpolation=cv2.INTER_AREA)
img = prepare(img, normalize=True)
img = np.concatenate((img, distortion_map(h, w, (h - 1) / 2.).numpy()[..., np.newaxis]), axis=2)
img = img.transpose((2, 0, 1))[np.newaxis, :]
return img
if not exists(args.src) and not exists(args.checkpoint):
raise FileNotFoundError
if not dirname(args.dst) is '':
os.makedirs(dirname(args.dst), exist_ok=True)
vidcap = cv2.VideoCapture(args.src)
frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# width = 640
# height = 480
fps = int(vidcap.get(cv2.CAP_PROP_FPS)) // 3
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
size = (width, height)
video = cv2.VideoWriter(args.dst, fourcc, fps, size)
imgs = []
torch.cuda.empty_cache()
with torch.no_grad():
model = Model(Parameter().args).model.cuda()
model = nn.DataParallel(model)
checkpoint = torch.load(args.checkpoint)
model.load_state_dict(checkpoint['state_dict'])
model.eval()
for _ in range(frames):
_, img = vidcap.read()
imgs.append(inp_pre(img, height, width))
if len(imgs) < 3:
continue
inp_imgs = np.concatenate(imgs)[np.newaxis, :]
inp_imgs = torch.from_numpy(inp_imgs).float().cuda()
out_imgs, _, _ = model(inp_imgs)
del inp_imgs
out_img = out_imgs[0]
out_img = out_img.clamp(0, 1.0).squeeze(dim=0)
out_img = out_img.detach().cpu().numpy().transpose((1, 2, 0))
out_img = prepare_reverse(out_img, normalize=True).astype(np.uint8)
video.write(out_img)
imgs.pop(0)
vidcap.release()
video.release()