Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

init llama infer #61

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 70 additions & 0 deletions torchprime/experimental/torchax_models/inference/llama_run.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
import torchax.interop
from torchprime.experimental.torchax_models.inference.llama_run import model
import torch
import torchax
import torchax.config
import jax
import time

env = torchax.default_env()
torch.manual_seed(42)
torch.set_default_dtype(torch.bfloat16)
torchax.enable_performance_mode()

max_seq_len = 512 # 8192
vocab_size = 128 # 32000
n_layer = 1
n_heads = 4
dim = 8
block_size = 16 # 2048
batch_size = 1


def fake_dataloader(size, vocab_size, seqlen, batch_size):
for _ in range(size):
x = torch.randint(0, vocab_size, (batch_size, seqlen), device="cpu")
yield x


if __name__ == "__main__":
with torch.no_grad():
input = torch.randint(0, vocab_size, (1, max_seq_len))
model_args = model.ModelArgs(
block_size=block_size,
vocab_size=vocab_size,
n_layer=n_layer,
n_heads=n_heads,
dim=dim,
max_seq_len=max_seq_len,
)
freqs_cis = model.precompute_freqs_cis(
model_args.dim // model_args.n_heads,
model_args.max_seq_len,
model_args.rope_theta,
model_args.use_scaled_rope,
).to(torch.bfloat16)
m = model.Transformer(model_args)
m.to(torch.bfloat16)

# TODO: move weight as arguemts of forward
def forward(input, freqs_cis, mask):
return m(input, 0, freqs_cis=freqs_cis, mask=mask)

jitted_forward = torchax.interop.jax_jit(forward)

data_iter = fake_dataloader(5, vocab_size, max_seq_len, batch_size)
with env:
m.to("jax")
freqs_cis = freqs_cis.to("jax")
for i, input in enumerate(data_iter):
input = input.to("jax")
mask = torch.ones_like(input)
step_start = time.perf_counter()
output = jitted_forward(input, freqs_cis, mask)
jax.block_until_ready(torchax.tensor.t2j(output))
step_end = time.perf_counter()
print(
i,
"step latency: ",
step_end - step_start,
)
Loading