forked from bytedance/res-adapter
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request bytedance#12 from AMEERAZAM08/main
Gradio Huggingface Demo Code
- Loading branch information
Showing
3 changed files
with
303 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
--- | ||
title: ResAdapter-GPU-Demo With SDXL-Lightning-Step4 | ||
emoji: 😎 | ||
colorFrom: green | ||
colorTo: blue | ||
sdk: gradio | ||
sdk_version: 4.20.1 | ||
app_file: app.py | ||
pinned: True | ||
--- | ||
|
||
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,285 @@ | ||
import os | ||
|
||
os.system("pip install -U peft") | ||
import random | ||
|
||
import gradio as gr | ||
import numpy as np | ||
import PIL.Image | ||
|
||
import spaces | ||
import torch | ||
from diffusers import ( | ||
StableDiffusionXLPipeline, | ||
UNet2DConditionModel, | ||
EulerDiscreteScheduler, | ||
) | ||
from huggingface_hub import hf_hub_download | ||
from safetensors.torch import load_file | ||
|
||
DESCRIPTION = """ | ||
# Res-Adapter :Domain Consistent Resolution Adapter for Diffusion Models | ||
ByteDance provide a demo of [ResAdapter](https://huggingface.co/jiaxiangc/res-adapter) with [SDXL-Lightning-Step4](https://huggingface.co/ByteDance/SDXL-Lightning) to expand resolution range from 1024-only to 256~1024. | ||
""" | ||
if not torch.cuda.is_available(): | ||
DESCRIPTION += ( | ||
"\n<h1>Running on CPU 🥶 This demo does not work on CPU.</a> instead</h1>" | ||
) | ||
|
||
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | ||
MAX_SEED = np.iinfo(np.int32).max | ||
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" | ||
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" | ||
|
||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||
|
||
|
||
|
||
base = "stabilityai/stable-diffusion-xl-base-1.0" | ||
repo = "ByteDance/SDXL-Lightning" | ||
ckpt = "sdxl_lightning_4step_unet.safetensors" # Use the correct ckpt for your step setting! | ||
|
||
|
||
# Load model. | ||
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(device) | ||
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt))) | ||
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet).to(device) | ||
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") | ||
|
||
|
||
# Load resadapter | ||
pipe.load_lora_weights( | ||
hf_hub_download( | ||
repo_id="jiaxiangc/res-adapter", | ||
subfolder="sdxl-i", | ||
filename="resolution_lora.safetensors", | ||
), | ||
adapter_name="res_adapter", | ||
) | ||
|
||
pipe = pipe.to(device) | ||
|
||
|
||
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | ||
if randomize_seed: | ||
seed = random.randint(0, MAX_SEED) | ||
return seed | ||
|
||
|
||
@spaces.GPU(enable_queue=True) | ||
def generate( | ||
prompt: str, | ||
negative_prompt: str = "", | ||
prompt_2: str = "", | ||
negative_prompt_2: str = "", | ||
use_negative_prompt: bool = False, | ||
use_prompt_2: bool = False, | ||
use_negative_prompt_2: bool = False, | ||
seed: int = 0, | ||
width: int = 1024, | ||
height: int = 1024, | ||
guidance_scale_base: float = 5.0, | ||
num_inference_steps_base: int = 4, | ||
progress=gr.Progress(track_tqdm=True), | ||
) -> PIL.Image.Image: | ||
print(f'** Generating image for: "{prompt}" **') | ||
generator = torch.Generator().manual_seed(seed) | ||
|
||
if not use_negative_prompt: | ||
prompt_2 = None # type: ignore | ||
if not use_negative_prompt_2: | ||
negative_prompt_2 = None # type: ignore | ||
|
||
pipe.set_adapters(["res_adapter"], adapter_weights=[0.0]) | ||
base_image = pipe( | ||
prompt=prompt, | ||
negative_prompt=negative_prompt, | ||
prompt_2=prompt_2, | ||
negative_prompt_2=negative_prompt_2, | ||
width=width, | ||
height=height, | ||
num_inference_steps=num_inference_steps_base, | ||
guidance_scale=guidance_scale_base, | ||
|
||
output_type="pil", | ||
generator=generator, | ||
).images[0] | ||
|
||
|
||
pipe.set_adapters(["res_adapter"], adapter_weights=[1.0]) | ||
res_adapt = pipe( | ||
prompt=prompt, | ||
negative_prompt=negative_prompt, | ||
prompt_2=prompt_2, | ||
negative_prompt_2=negative_prompt_2, | ||
width=width, | ||
height=height, | ||
num_inference_steps=num_inference_steps_base, | ||
guidance_scale=guidance_scale_base, | ||
output_type="pil", | ||
generator=generator, | ||
).images[0] | ||
|
||
return [res_adapt, base_image] | ||
|
||
|
||
|
||
|
||
|
||
examples = [ | ||
"A girl smiling", | ||
"A realistic photograph of an astronaut in a jungle, cold color palette, detailed, 8k", | ||
|
||
] | ||
|
||
theme = gr.themes.Base( | ||
font=[ | ||
gr.themes.GoogleFont("Libre Franklin"), | ||
gr.themes.GoogleFont("Public Sans"), | ||
"system-ui", | ||
"sans-serif", | ||
], | ||
) | ||
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo: | ||
gr.Markdown(DESCRIPTION) | ||
gr.DuplicateButton( | ||
value="Duplicate Space for private use", | ||
elem_id="duplicate-button", | ||
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | ||
) | ||
with gr.Group(): | ||
prompt = gr.Text( | ||
label="Prompt", | ||
show_label=False, | ||
max_lines=1, | ||
container=False, | ||
placeholder="Enter your prompt", | ||
) | ||
run_button = gr.Button("Generate") | ||
# result = gr.Gallery(label="Left is Base and Right is Lora"), | ||
with gr.Accordion("Advanced options", open=False): | ||
with gr.Row(): | ||
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | ||
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) | ||
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False) | ||
negative_prompt = gr.Text( | ||
label="Negative prompt", | ||
max_lines=1, | ||
placeholder="blur, cartoon, bad, face, painting", | ||
visible=False, | ||
) | ||
prompt_2 = gr.Text( | ||
label="Prompt 2", | ||
max_lines=1, | ||
placeholder="Enter your prompt", | ||
visible=False, | ||
) | ||
negative_prompt_2 = gr.Text( | ||
label="Negative prompt 2", | ||
max_lines=1, | ||
placeholder="Enter a negative prompt", | ||
visible=False, | ||
) | ||
|
||
seed = gr.Slider( | ||
label="Seed", | ||
minimum=0, | ||
maximum=MAX_SEED, | ||
step=1, | ||
value=0, | ||
) | ||
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | ||
with gr.Row(): | ||
width = gr.Slider( | ||
label="Width", | ||
minimum=256, | ||
maximum=MAX_IMAGE_SIZE, | ||
step=32, | ||
value=1024, | ||
) | ||
height = gr.Slider( | ||
label="Height", | ||
minimum=256, | ||
maximum=MAX_IMAGE_SIZE, | ||
step=32, | ||
value=1024, | ||
) | ||
with gr.Row(): | ||
guidance_scale_base = gr.Slider( | ||
label="Guidance scale for base", | ||
minimum=0, | ||
maximum=1, | ||
step=0.1, | ||
value=0, | ||
) | ||
num_inference_steps_base = gr.Slider( | ||
label="Number of inference steps for base", | ||
minimum=1, | ||
maximum=50, | ||
step=1, | ||
value=4, | ||
) | ||
gr.Examples( | ||
examples=examples, | ||
inputs=prompt, | ||
outputs=None, | ||
fn=generate, | ||
cache_examples=CACHE_EXAMPLES, | ||
) | ||
|
||
use_negative_prompt.change( | ||
fn=lambda x: gr.update(visible=x), | ||
inputs=use_negative_prompt, | ||
outputs=negative_prompt, | ||
queue=False, | ||
api_name=False, | ||
) | ||
use_prompt_2.change( | ||
fn=lambda x: gr.update(visible=x), | ||
inputs=use_prompt_2, | ||
outputs=prompt_2, | ||
queue=False, | ||
api_name=False, | ||
) | ||
use_negative_prompt_2.change( | ||
fn=lambda x: gr.update(visible=x), | ||
inputs=use_negative_prompt_2, | ||
outputs=negative_prompt_2, | ||
queue=False, | ||
api_name=False, | ||
) | ||
gr.on( | ||
triggers=[ | ||
prompt.submit, | ||
negative_prompt.submit, | ||
prompt_2.submit, | ||
negative_prompt_2.submit, | ||
run_button.click, | ||
], | ||
fn=randomize_seed_fn, | ||
inputs=[seed, randomize_seed], | ||
outputs=seed, | ||
queue=False, | ||
api_name=False, | ||
).then( | ||
fn=generate, | ||
inputs=[ | ||
prompt, | ||
negative_prompt, | ||
prompt_2, | ||
negative_prompt_2, | ||
use_negative_prompt, | ||
use_prompt_2, | ||
use_negative_prompt_2, | ||
seed, | ||
width, | ||
height, | ||
guidance_scale_base, | ||
num_inference_steps_base, | ||
], | ||
outputs=gr.Gallery(label="Right is Base and Left is ResAdapt with SDXL-ByteDance"), | ||
api_name="run", | ||
) | ||
|
||
if __name__ == "__main__": | ||
demo.queue(max_size=20, api_open=False).launch(show_api=False) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
gradio==4.8.0 | ||
diffusers | ||
transformers | ||
accelerate | ||
safetensors | ||
huggingface_hub |