Skip to content

Commit

Permalink
Deployed docs from commit acef4f9
Browse files Browse the repository at this point in the history
  • Loading branch information
Alex-JG3 committed Feb 19, 2024
1 parent acef4f9 commit ceab6d8
Show file tree
Hide file tree
Showing 3 changed files with 50 additions and 1 deletion.
19 changes: 19 additions & 0 deletions docs/Contents/eigenvalues_and_eigenvectors.html
Original file line number Diff line number Diff line change
Expand Up @@ -649,6 +649,25 @@ <h3><span class="math notranslate nohighlight">\(Ax = 0\)</span> has a non-trivi
\end{bmatrix}\end{split}\]</div>
<p>Since the columns of <span class="math notranslate nohighlight">\(A\)</span> are linearly independent, <span class="math notranslate nohighlight">\(\mathbf{AB}_i = \mathbf{e}_i\)</span> has a unique solution. Thus we can find each column <span class="math notranslate nohighlight">\(\mathbf{B}_i\)</span> thus <span class="math notranslate nohighlight">\(\mathbf{A}\)</span> is invertible.</p>
</aside>
<aside class="topic">
<p class="topic-title">Theorem</p>
<p>A symmetric matrix <span class="math notranslate nohighlight">\(\mathbf{A}\)</span> with distinct eigenvalues has orthogonal eigenvectors.</p>
<p><strong>Proof</strong></p>
<p>We only prove for the <span class="math notranslate nohighlight">\(2 \times 2\)</span> case where <span class="math notranslate nohighlight">\(\mathbf{A}\)</span> has two eigenvectors.</p>
<div class="math notranslate nohighlight">
\[\begin{split}\mathbf{A} \mathbf{x}_1 &amp; = \lambda_1 \mathbf{x}_1 \\
\mathbf{x}_2^T \mathbf{A} \mathbf{x}_1 &amp; = \lambda_1 \mathbf{x}_2^T \mathbf{x}_1 \\\end{split}\]</div>
<p>And,</p>
<div class="math notranslate nohighlight">
\[\begin{split}\mathbf{A x}_2 &amp; = \lambda_2 \mathbf{x}_2 \\
\mathbf{x}_1^T \mathbf{A x}_2 &amp; = \lambda_2 \mathbf{x}_1^T \mathbf{x}_2 \\
\mathbf{x}_2^T \mathbf{A x}_1 &amp; = \lambda_2 \mathbf{x}_2^T \mathbf{x}_1 \\\end{split}\]</div>
<p>Taking these away from each other, we have,</p>
<div class="math notranslate nohighlight">
\[\begin{split}\mathbf{x}_2^T \mathbf{A x}_1 - \mathbf{x}_2^T \mathbf{A x}_1 &amp; = (\lambda_1 - \lambda_2) \mathbf{x}_2^T \mathbf{x}_1 \\
0 &amp; = (\lambda_1 - \lambda_2) \mathbf{x}_2^T \mathbf{x}_1\end{split}\]</div>
<p>Since <span class="math notranslate nohighlight">\(\lambda_1\)</span> and <span class="math notranslate nohighlight">\(\lambda_2\)</span> are distinct, their difference is non-zero. Therefore, <span class="math notranslate nohighlight">\(\mathbf{x}_2^T \mathbf{x}_1\)</span> must be <span class="math notranslate nohighlight">\(0\)</span>.</p>
</aside>
</section>
</section>
</section>
Expand Down
30 changes: 30 additions & 0 deletions docs/_sources/Contents/eigenvalues_and_eigenvectors.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -172,3 +172,33 @@ Since the columns of :math:`A` are linearly independent, some column :math:`v_i`
\end{bmatrix}
Since the columns of :math:`A` are linearly independent, :math:`\mathbf{AB}_i = \mathbf{e}_i` has a unique solution. Thus we can find each column :math:`\mathbf{B}_i` thus :math:`\mathbf{A}` is invertible.

.. topic:: Theorem

A symmetric matrix :math:`\mathbf{A}` with distinct eigenvalues has orthogonal eigenvectors.

**Proof**

We only prove for the :math:`2 \times 2` case where :math:`\mathbf{A}` has two eigenvectors.

.. math::
\mathbf{A} \mathbf{x}_1 & = \lambda_1 \mathbf{x}_1 \\
\mathbf{x}_2^T \mathbf{A} \mathbf{x}_1 & = \lambda_1 \mathbf{x}_2^T \mathbf{x}_1 \\
And,

.. math::
\mathbf{A x}_2 & = \lambda_2 \mathbf{x}_2 \\
\mathbf{x}_1^T \mathbf{A x}_2 & = \lambda_2 \mathbf{x}_1^T \mathbf{x}_2 \\
\mathbf{x}_2^T \mathbf{A x}_1 & = \lambda_2 \mathbf{x}_2^T \mathbf{x}_1 \\
Taking these away from each other, we have,

.. math::
\mathbf{x}_2^T \mathbf{A x}_1 - \mathbf{x}_2^T \mathbf{A x}_1 & = (\lambda_1 - \lambda_2) \mathbf{x}_2^T \mathbf{x}_1 \\
0 & = (\lambda_1 - \lambda_2) \mathbf{x}_2^T \mathbf{x}_1
Since :math:`\lambda_1` and :math:`\lambda_2` are distinct, their difference is non-zero. Therefore, :math:`\mathbf{x}_2^T \mathbf{x}_1` must be :math:`0`.
Loading

0 comments on commit ceab6d8

Please sign in to comment.