Skip to content

AllenWrong/GSOC2022-Deep-Regression

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GSoC2022-Deep-Regression

Ongoing GSoC project, those are my experiments result.

Experiments

Hyper-parameters:

batch_size=128
lr=3e-3

MAE on test set. Some result will be posted soon, I'm sorting them out.

NN Architecture Model I Model II Model III Epoch
ResNet34 (pretrained on ImageNet) 0.2849 0.2162 0.1332 300
Pure VIT 0.4420 (15*15) 0.2437(8*8) 0.2175 (8*8) 300
CNN-T 0.1459 300
MobileNet V2 (pretrained on ImageNet) 0.1568 300
CvT-13 0.2548 0.1403 300

Scatter plot on test set with ResNet34

Arch Model I Model II Model IIII
ResNet
Pure VIT
CNN-T
MobileNet V2
CvT-13

Citation

  • DeepLense, (2021), GitHub repository.

  • Yurii's Post link.

  • ResNet34

    Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

  • Pure VIT Code referenced from vit-pytorch.

  • CNN-T

    Li, S.; Wu, C.; Xiong, N. Hybrid Architecture Based on CNN and Transformer for Strip Steel Surface Defect Classification. Electronics 2022, 11, 1200. https://doi.org/10.3390/electronics11081200

  • MobileNet V2 link

  • CVT

    Wu H, Xiao B, Codella N, et al. Cvt: Introducing convolutions to vision transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 22-31.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published