Skip to content

Commit

Permalink
Merge branch 'main' of github.com:Anjishnubose/MeanFieldToolkit.jl
Browse files Browse the repository at this point in the history
  • Loading branch information
Anjishnubose committed Mar 19, 2024
2 parents cdcc5dc + 7f173a1 commit 65111e3
Show file tree
Hide file tree
Showing 5 changed files with 287 additions and 222 deletions.
105 changes: 53 additions & 52 deletions Sample/KagomeHeis.jl
Original file line number Diff line number Diff line change
@@ -1,83 +1,84 @@
using MeanFieldToolkit, LinearAlgebra, TightBindingToolkit, Distributions, LaTeXStrings

using MeanFieldToolkit, TightBindingToolkit, FixedPointToolkit
using LinearAlgebra, Distributions, Distributions, LaTeXStrings, Base.Threads
##### YOU NEED TO CREATE THE FOLDER Sample/KagomeHeis_Data BEFORE RUNNING THIS SCRIPT
########## Defining Kagome lattice with the doubled unit cell
##### Primitives
const a1 = [4.0, 0.0]
const a2 = [1.0, sqrt(3)]
const a1 = [4.0, 0.0]
const a2 = [1.0, sqrt(3)]
##### 6 sublattices
const b1 = [0.0, 0.0]
const b2 = [1.0, 0.0]
const b3 = [0.5, sqrt(3)/2]
const b4 = [2.0 + 0.0, 0.0]
const b5 = [2.0 + 1.0, 0.0]
const b6 = [2.0 + 0.5, sqrt(3)/2]
const b1 = [0.0, 0.0]
const b2 = [1.0, 0.0]
const b3 = [0.5, sqrt(3) / 2]
const b4 = [2.0 + 0.0, 0.0]
const b5 = [2.0 + 1.0, 0.0]
const b6 = [2.0 + 0.5, sqrt(3) / 2]
##### On-site spin matrices
const InitialField = zeros(Float64, 4)
const OnSite = SpinMats(1//2)
const InitialField = zeros(Float64, 4)
const OnSite = SpinMats(1 // 2)
##### Unit cell with local dimensions of 2, and tracking rank-2 bonds
UC = UnitCell([a1, a2], 2, 2)
AddBasisSite!.(Ref(UC), [b1, b2, b3, b4, b5, b6], Ref(InitialField) , Ref(OnSite))
UC = UnitCell([a1, a2], 2, 2)
AddBasisSite!.(Ref(UC), [b1, b2, b3, b4, b5, b6], Ref(InitialField), Ref(OnSite))
##### Strength of the Heisenberg interaction
const J = 1.0
const J = 1.0
##### Heisenberg spin exchange matrix
Jmatrix = Matrix{Float64}(I, 3, 3)
Jmatrix = Matrix{Float64}(I, 3, 3)
##### Heisenberg interaction written in terms of 4-parton interactions --> rank-4 array.
U = SpinToPartonCoupling(Jmatrix, 1//2)
U = SpinToPartonCoupling(Jmatrix, 1 // 2)
###### Interaction parameter which is isotropic.
JParam = Param(J, 4)
JParam = Param(J, 4)
AddIsotropicBonds!(JParam, UC, 1.0, U, "Heisenberg Interaction")
Interactions= [JParam]
Interactions = [JParam]
##### Brillouin zone
const n = 10
const kSize = 6 * n + 3
bz = BZ([kSize, kSize])
const n = 10
const kSize = 6 * n + 3
bz = BZ([kSize, kSize])
FillBZ!(bz, UC)
##### Thermodynamic parameters
const T = 0.001
const filling = 0.5
const stat = -1
const T = 0.001
const filling = 0.5
const stat = -1
##### Mixing alpha used for self-consistency solver
const mixingAlpha = 0.5
const mixingAlpha = 0.5
##### Different flux configuration ansatzes to be tested.
phis = collect(LinRange(-pi/2, pi/2, 21))
phis = collect(LinRange(-pi / 2, pi / 2, 21))

for ϕ in phis

##### Hopping expectation params
##### Hopping with flux ϕ through the triangles, and π-2ϕ through the hexagons
t_flux = Param(1.0, 2)
AddAnisotropicBond!(t_flux, UC, 1, 2, [ 0, 0], exp( im * ϕ/3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 2, 3, [ 0, 0], exp( im * ϕ/3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 3, 1, [ 0, 0], exp( im * ϕ/3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 4, 5, [ 0, 0], exp( im * ϕ/3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 5, 6, [ 0, 0], exp( im * ϕ/3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 6, 4, [ 0, 0], exp( im * ϕ/3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 4, 2, [ 0, 0], exp( im * ϕ/3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
t_flux = Param(1.0, 2)
AddAnisotropicBond!(t_flux, UC, 1, 2, [0, 0], exp(im * ϕ / 3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 2, 3, [0, 0], exp(im * ϕ / 3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 3, 1, [0, 0], exp(im * ϕ / 3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 4, 5, [0, 0], exp(im * ϕ / 3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 5, 6, [0, 0], exp(im * ϕ / 3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 6, 4, [0, 0], exp(im * ϕ / 3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 4, 2, [0, 0], exp(im * ϕ / 3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")

AddAnisotropicBond!(t_flux, UC, 2, 6, [ 0, -1], exp( im * (pi + ϕ/3)) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 4, 6, [ 0, -1], exp(-im * (pi + ϕ/3)) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 5, 3, [ 1, -1], exp( im * (pi + ϕ/3)) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 5, 1, [ 1, 0], exp(-im * (pi + ϕ/3)) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 3, 1, [ 0, 1], exp( im * ϕ/3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 2, 6, [0, -1], exp(im * (pi + ϕ / 3)) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 4, 6, [0, -1], exp(-im * (pi + ϕ / 3)) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 5, 3, [1, -1], exp(im * (pi + ϕ / 3)) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 5, 1, [1, 0], exp(-im * (pi + ϕ / 3)) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")
AddAnisotropicBond!(t_flux, UC, 3, 1, [0, 1], exp(im * ϕ / 3) * OnSite[4], 1.0, "[ϕ, ϕ, π - 2*ϕ] Hopping with ϕ/π = $(ϕ/pi)")

######### Weiss fields for ordering
Ordering = Param(1.0, 2)
AddAnisotropicBond!(Ordering, UC, 1, 1, [ 0, 0], sum([ -sqrt(3)/2, -1/2, 0.0] .* OnSite[1:3]), 0.0, "120 degree ordering")
AddAnisotropicBond!(Ordering, UC, 2, 2, [ 0, 0], sum([ sqrt(3)/2, -1/2, 0.0] .* OnSite[1:3]), 0.0, "120 degree ordering")
AddAnisotropicBond!(Ordering, UC, 3, 3, [ 0, 0], sum([ 0.0, 1.0, 0.0] .* OnSite[1:3]), 0.0, "120 degree ordering")
AddAnisotropicBond!(Ordering, UC, 4, 4, [ 0, 0], sum([ -sqrt(3)/2, -1/2, 0.0] .* OnSite[1:3]), 0.0, "120 degree ordering")
AddAnisotropicBond!(Ordering, UC, 5, 5, [ 0, 0], sum([ sqrt(3)/2, -1/2, 0.0] .* OnSite[1:3]), 0.0, "120 degree ordering")
AddAnisotropicBond!(Ordering, UC, 6, 6, [ 0, 0], sum([ 0.0, 1.0, 0.0] .* OnSite[1:3]), 0.0, "120 degree ordering")
Ordering = Param(1.0, 2)
AddAnisotropicBond!(Ordering, UC, 1, 1, [0, 0], sum([-sqrt(3) / 2, -1 / 2, 0.0] .* OnSite[1:3]), 0.0, "120 degree ordering")
AddAnisotropicBond!(Ordering, UC, 2, 2, [0, 0], sum([sqrt(3) / 2, -1 / 2, 0.0] .* OnSite[1:3]), 0.0, "120 degree ordering")
AddAnisotropicBond!(Ordering, UC, 3, 3, [0, 0], sum([0.0, 1.0, 0.0] .* OnSite[1:3]), 0.0, "120 degree ordering")
AddAnisotropicBond!(Ordering, UC, 4, 4, [0, 0], sum([-sqrt(3) / 2, -1 / 2, 0.0] .* OnSite[1:3]), 0.0, "120 degree ordering")
AddAnisotropicBond!(Ordering, UC, 5, 5, [0, 0], sum([sqrt(3) / 2, -1 / 2, 0.0] .* OnSite[1:3]), 0.0, "120 degree ordering")
AddAnisotropicBond!(Ordering, UC, 6, 6, [0, 0], sum([0.0, 1.0, 0.0] .* OnSite[1:3]), 0.0, "120 degree ordering")

HoppingOrders = [t_flux, Ordering]
HoppingOrders = [t_flux, Ordering]
##### Build the model (trivial since we are looking at the pure spin Heisenberg model)
H = Hamiltonian(UC, bz)
H = Hamiltonian(UC, bz)
DiagonalizeHamiltonian!(H)
M = Model(UC, bz, H ; T=T, filling=filling, stat=stat)
M = Model(UC, bz, H; T=T, filling=filling, stat=stat)
##### Build the mean-field theory object, with chosen scaling such that on-site ordering is suppressed.
mft = TightBindingMFT(M, HoppingOrders, Interactions, Function[InterQuarticToHopping], Dict{String, Float64}("ij" => 1.0, "ii" => 0.0, "jj" => 0.0) )
mft = TightBindingMFT(M, HoppingOrders, Interactions, Function[InterQuarticToHopping], Dict{String,Float64}("ij" => 1.0, "ii" => 0.0, "jj" => 0.0))
##### File to save data to
fileName = "./KagomeHeis_Data/J=$(round(J, digits=3))_phi=$(round/pi, digits=3))Pi_New.jld2"
fileName = "./KagomeHeis_Data/J=$(round(J, digits=3))_phi=$(round/pi, digits=3))Pi_New.jld2"
##### Solve the mean-field theory and save the results in fileName
SolveMFT!(mft, fileName)

Expand Down
82 changes: 40 additions & 42 deletions Sample/RenormalizedSquaretJ.jl
Original file line number Diff line number Diff line change
@@ -1,90 +1,88 @@
include("../src/MeanFieldToolkit.jl")
using .MeanFieldToolkit

using LinearAlgebra, TightBindingToolkit, Distributions, Base.Threads

using MeanFieldToolkit, TightBindingToolkit, FixedPointToolkit
using LinearAlgebra, Distributions, Distributions, LaTeXStrings, Base.Threads
##### YOU NEED TO CREATE THE FOLDER Sample/SquaretJ_Data BEFORE RUNNING THIS SCRIPT
################### Square lattice with the doubles Unit Cell
##### Primitive vectors
const a1 = [1.0, 1.0]
const a2 = [1.0, -1.0]
##### Primitives
const a1 = [1.0, 1.0]
const a2 = [1.0, -1.0]

const b1 = [0.0, 0.0]
const b2 = [1.0, 0.0]
const b1 = [0.0, 0.0]
const b2 = [1.0, 0.0]

HoppingUC = UnitCell([a1, a2], 2, 2)
PairingUC = UnitCell([a1, a2], 2, 2)
HoppingUC = UnitCell([a1, a2], 2, 2)
PairingUC = UnitCell([a1, a2], 2, 2)

AddBasisSite!(HoppingUC, b1)
AddBasisSite!(HoppingUC, b2)

AddBasisSite!(PairingUC, b1)
AddBasisSite!(PairingUC, b2)

SpinVec = SpinMats(1//2)
SpinVec = SpinMats(1 // 2)

##### HoppingParams
const t = 1.0
t1Param = Param(t, 2)
const t = 1.0
t1Param = Param(t, 2)
AddIsotropicBonds!(t1Param, HoppingUC, 1.0, SpinVec[4], "t1")

const J = t/5
Jmatrix = Matrix{Float64}(I, 3, 3)
U = SpinToPartonCoupling(Jmatrix, 1//2)
JParam = Param(J, 4)
const J = t / 5
Jmatrix = Matrix{Float64}(I, 3, 3)
U = SpinToPartonCoupling(Jmatrix, 1 // 2)
JParam = Param(J, 4)
AddIsotropicBonds!(JParam, HoppingUC, 1.0, U, "Heisenberg Interaction")

const n = 10
const kSize = 6 * n + 3
bz = BZ([kSize, kSize])
FillBZ!(bz, HoppingUC)
const n = 10
const kSize = 6 * n + 3
bz = BZ([kSize, kSize])
FillBZ!(bz, HoppingUC)



##### Thermodynamic parameters
const T = 0.001
const stat = -1
const T = 0.001
const stat = -1

const mixingAlpha = 0.5
const mixingAlpha = 0.5

##### Renormalized MFT from https://arxiv.org/pdf/cond-mat/0311604.pdf

fillings = collect(LinRange(0.2, 0.49, 2))

for filling in fillings

delta = 1-2*filling
rnorm_hopping_factor = 2*delta/(1+delta)
rnorm_int_factor = 4/((1+delta)^2)
delta = 1 - 2 * filling
rnorm_hopping_factor = 2 * delta / (1 + delta)
rnorm_int_factor = 4 / ((1 + delta)^2)

push!(t1Param.value, -t * rnorm_hopping_factor)
push!(JParam.value, J * rnorm_int_factor)

ModifyUnitCell!(HoppingUC, [t1Param])
Interactions = [JParam]
Interactions = [JParam]

##### Hopping expectation params
t_s = Param(1.0, 2)
t_s = Param(1.0, 2)
AddIsotropicBonds!(t_s, HoppingUC, 1.0, SpinVec[4], "s Hopping")

HoppingOrders = [t_s]
HoppingOrders = [t_s]

##### Pairing expectation params
p_dx2y2 = Param(1.0, 2)
AddAnisotropicBond!(p_dx2y2, PairingUC, 1, 2, [ 0, 0], (SpinVec[2]), 1.0, "d_x^2-y^2 Pairing")
AddAnisotropicBond!(p_dx2y2, PairingUC, 1, 2, [-1 , -1], (SpinVec[2]), 1.0, "d_x^2-y^2 Pairing")
AddAnisotropicBond!(p_dx2y2, PairingUC, 1, 2, [ 0, -1], -(SpinVec[2]), 1.0, "d_x^2-y^2 Pairing")
AddAnisotropicBond!(p_dx2y2, PairingUC, 1, 2, [ -1, 0], -(SpinVec[2]), 1.0, "d_x^2-y^2 Pairing")
p_dx2y2 = Param(1.0, 2)
AddAnisotropicBond!(p_dx2y2, PairingUC, 1, 2, [0, 0], (SpinVec[2]), 1.0, "d_x^2-y^2 Pairing")
AddAnisotropicBond!(p_dx2y2, PairingUC, 1, 2, [-1, -1], (SpinVec[2]), 1.0, "d_x^2-y^2 Pairing")
AddAnisotropicBond!(p_dx2y2, PairingUC, 1, 2, [0, -1], -(SpinVec[2]), 1.0, "d_x^2-y^2 Pairing")
AddAnisotropicBond!(p_dx2y2, PairingUC, 1, 2, [-1, 0], -(SpinVec[2]), 1.0, "d_x^2-y^2 Pairing")

PairingOrders = [p_dx2y2]
PairingOrders = [p_dx2y2]

bdgH = Hamiltonian(HoppingUC, PairingUC, bz)
bdgH = Hamiltonian(HoppingUC, PairingUC, bz)
DiagonalizeHamiltonian!(bdgH)

bdgModel = BdGModel(HoppingUC, PairingUC, bz, bdgH ; T=T, filling=filling, stat=stat)
bdgModel = BdGModel(HoppingUC, PairingUC, bz, bdgH; T=T, filling=filling, stat=stat)
SolveModel!(bdgModel)

bdgmft = BdGMFT(bdgModel, HoppingOrders, PairingOrders, Interactions, InterQuarticToHopping, InterQuarticToPairing)
fileName = "./Sample/SquaretJ_Data/filling=$(round(filling, digits=3))_t1=$(round(t1Param.value[end], digits=3))_J=$(round(J, digits=3))_wtWeiss.jld2"
bdgmft = BdGMFT(bdgModel, HoppingOrders, PairingOrders, Interactions, InterQuarticToHopping, InterQuarticToPairing)
fileName = "./SquaretJ_Data/filling=$(round(filling, digits=3))_t1=$(round(t1Param.value[end], digits=3))_J=$(round(J, digits=3))_wtWeiss.jld2"
SolveMFT!(bdgmft, fileName)

end
Loading

4 comments on commit 65111e3

@Anjishnubose
Copy link
Owner Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/103201

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v1.1.2 -m "<description of version>" 65111e305d98a25ac1939fec9fa1d5118331da57
git push origin v1.1.2

@Anjishnubose
Copy link
Owner Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request updated: JuliaRegistries/General/103201

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v1.1.2 -m "<description of version>" 65111e305d98a25ac1939fec9fa1d5118331da57
git push origin v1.1.2

Please sign in to comment.