Skip to content

Commit

Permalink
torch 2.6.0 support
Browse files Browse the repository at this point in the history
Signed-off-by: Vladimir Mandic <[email protected]>
  • Loading branch information
vladmandic committed Dec 31, 2024
1 parent 5f69cd0 commit cd32b96
Show file tree
Hide file tree
Showing 2 changed files with 18 additions and 16 deletions.
22 changes: 12 additions & 10 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,31 +4,33 @@

NYE refresh release with quite a few optimizatios and bug fixes...

- **LoRA**:
- **LoRA**:
- **Sana** support
- quantized models support
- fuse support with on-demand apply/unapply
- add legacy option in *settings -> networks*
- **HunyuanVideo**
- **HunyuanVideo**:
- optimizations: full offload, quantization and tiling support
- **LTXVideo**
- **LTXVideo**:
- optimizations: full offload, quantization and tiling support
- [TeaCache](https://github.com/ali-vilab/TeaCache/blob/main/TeaCache4LTX-Video/README.md) integration
- **VAE**:
- **VAE**:
- tiling granular options in *settings -> variable auto encoder*
- **UI**:
- **UI**:
- live preview optimizations and error handling
- live preview high quality output, thanks @Disty0
- CSS optimizations when log view is disabled
- **Samplers**:
- **Samplers**:
- add flow shift options and separate dynamic thresholding from dynamic shifting
- autodetect matching sigma capabilities
- **API**
- **API**:
- better default values for generate
- **Refactor**:
- **Refactor**:
- remove all LDM imports if running in native mode
- startup optimizatios
- **Fixes**
- startup optimizatios
- **Torch**:
- support for `torch==2.6.0`
- **Fixes**:
- flux pipeline switches: txt/img/inpaint
- flux custom unet loader for bnb
- interrogate caption with T5
Expand Down
12 changes: 6 additions & 6 deletions modules/masking.py
Original file line number Diff line number Diff line change
Expand Up @@ -388,7 +388,7 @@ def run_mask(input_image: Image.Image, input_mask: Image.Image = None, return_ty
if input_image is None:
return input_mask

t0 = time.time()
# t0 = time.time()
input_mask = get_mask(input_image, input_mask) # perform optional auto-masking
if input_mask is None:
return None
Expand Down Expand Up @@ -436,14 +436,14 @@ def run_mask(input_image: Image.Image, input_mask: Image.Image = None, return_ty
if opts.invert:
mask = np.invert(mask)

mask_size = np.count_nonzero(mask)
total_size = np.prod(mask.shape)
area_size = np.count_nonzero(mask)
t1 = time.time()

return_type = return_type or opts.preview_type

shared.log.debug(f'Mask: size={input_image.width}x{input_image.height} masked={mask_size}px area={area_size/total_size:.2f} auto={opts.auto_mask} blur={opts.mask_blur:.3f} erode={opts.mask_erode:.3f} dilate={opts.mask_dilate:.3f} type={return_type} time={t1-t0:.2f}')
# mask_size = np.count_nonzero(mask)
# total_size = np.prod(mask.shape)
# area_size = np.count_nonzero(mask)
# t1 = time.time()
# shared.log.debug(f'Mask: size={input_image.width}x{input_image.height} masked={mask_size}px area={area_size/total_size:.2f} auto={opts.auto_mask} blur={opts.mask_blur:.3f} erode={opts.mask_erode:.3f} dilate={opts.mask_dilate:.3f} type={return_type} time={t1-t0:.2f}')
if return_type == 'None':
return input_mask
elif return_type == 'Opaque':
Expand Down

0 comments on commit cd32b96

Please sign in to comment.