Skip to content

Commit

Permalink
(refactor) - migrate router.deployment_callback_on_success to use S…
Browse files Browse the repository at this point in the history
…tandardLoggingPayload (#7015)

* migrate deployment_callback_on_success to use SLP

* test_deployment_callback_on_success
  • Loading branch information
ishaan-jaff authored Dec 4, 2024
1 parent e499d39 commit beef643
Show file tree
Hide file tree
Showing 3 changed files with 145 additions and 9 deletions.
17 changes: 9 additions & 8 deletions litellm/router.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,7 @@
from litellm.types.services import ServiceLoggerPayload, ServiceTypes
from litellm.types.utils import OPENAI_RESPONSE_HEADERS
from litellm.types.utils import ModelInfo as ModelMapInfo
from litellm.types.utils import StandardLoggingPayload
from litellm.utils import (
CustomStreamWrapper,
ModelResponse,
Expand Down Expand Up @@ -3297,26 +3298,26 @@ async def deployment_callback_on_success(
Track remaining tpm/rpm quota for model in model_list
"""
try:
standard_logging_object: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
)
if standard_logging_object is None:
raise ValueError("standard_logging_object is None")
if kwargs["litellm_params"].get("metadata") is None:
pass
else:
deployment_name = kwargs["litellm_params"]["metadata"].get(
"deployment", None
) # stable name - works for wildcard routes as well
model_group = kwargs["litellm_params"]["metadata"].get(
"model_group", None
)
model_info = kwargs["litellm_params"].get("model_info", {}) or {}
id = model_info.get("id", None)
model_group = standard_logging_object.get("model_group", None)
id = standard_logging_object.get("model_id", None)
if model_group is None or id is None:
return
elif isinstance(id, int):
id = str(id)

parent_otel_span = _get_parent_otel_span_from_kwargs(kwargs)

_usage_obj = completion_response.get("usage")
total_tokens = _usage_obj.get("total_tokens", 0) if _usage_obj else 0
total_tokens: float = standard_logging_object.get("total_tokens", 0)

# ------------
# Setup values
Expand Down
131 changes: 131 additions & 0 deletions tests/router_unit_tests/create_mock_standard_logging_payload.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
import io
import os
import sys


sys.path.insert(0, os.path.abspath("../.."))

import asyncio
import gzip
import json
import logging
import time
from unittest.mock import AsyncMock, patch

import pytest

import litellm
from litellm import completion
from litellm._logging import verbose_logger
from litellm.integrations.datadog.datadog import *
from datetime import datetime, timedelta
from litellm.types.utils import (
StandardLoggingPayload,
StandardLoggingModelInformation,
StandardLoggingMetadata,
StandardLoggingHiddenParams,
)

verbose_logger.setLevel(logging.DEBUG)


def create_standard_logging_payload() -> StandardLoggingPayload:
return StandardLoggingPayload(
id="test_id",
call_type="completion",
response_cost=0.1,
response_cost_failure_debug_info=None,
status="success",
total_tokens=30,
prompt_tokens=20,
completion_tokens=10,
startTime=1234567890.0,
endTime=1234567891.0,
completionStartTime=1234567890.5,
model_map_information=StandardLoggingModelInformation(
model_map_key="gpt-3.5-turbo", model_map_value=None
),
model="gpt-3.5-turbo",
model_id="model-123",
model_group="openai-gpt",
api_base="https://api.openai.com",
metadata=StandardLoggingMetadata(
user_api_key_hash="test_hash",
user_api_key_org_id=None,
user_api_key_alias="test_alias",
user_api_key_team_id="test_team",
user_api_key_user_id="test_user",
user_api_key_team_alias="test_team_alias",
spend_logs_metadata=None,
requester_ip_address="127.0.0.1",
requester_metadata=None,
),
cache_hit=False,
cache_key=None,
saved_cache_cost=0.0,
request_tags=[],
end_user=None,
requester_ip_address="127.0.0.1",
messages=[{"role": "user", "content": "Hello, world!"}],
response={"choices": [{"message": {"content": "Hi there!"}}]},
error_str=None,
model_parameters={"stream": True},
hidden_params=StandardLoggingHiddenParams(
model_id="model-123",
cache_key=None,
api_base="https://api.openai.com",
response_cost="0.1",
additional_headers=None,
),
)


def create_standard_logging_payload_with_long_content() -> StandardLoggingPayload:
return StandardLoggingPayload(
id="test_id",
call_type="completion",
response_cost=0.1,
response_cost_failure_debug_info=None,
status="success",
total_tokens=30,
prompt_tokens=20,
completion_tokens=10,
startTime=1234567890.0,
endTime=1234567891.0,
completionStartTime=1234567890.5,
model_map_information=StandardLoggingModelInformation(
model_map_key="gpt-3.5-turbo", model_map_value=None
),
model="gpt-3.5-turbo",
model_id="model-123",
model_group="openai-gpt",
api_base="https://api.openai.com",
metadata=StandardLoggingMetadata(
user_api_key_hash="test_hash",
user_api_key_org_id=None,
user_api_key_alias="test_alias",
user_api_key_team_id="test_team",
user_api_key_user_id="test_user",
user_api_key_team_alias="test_team_alias",
spend_logs_metadata=None,
requester_ip_address="127.0.0.1",
requester_metadata=None,
),
cache_hit=False,
cache_key=None,
saved_cache_cost=0.0,
request_tags=[],
end_user=None,
requester_ip_address="127.0.0.1",
messages=[{"role": "user", "content": "Hello, world!" * 80000}],
response={"choices": [{"message": {"content": "Hi there!" * 80000}}]},
error_str="error_str" * 80000,
model_parameters={"stream": True},
hidden_params=StandardLoggingHiddenParams(
model_id="model-123",
cache_key=None,
api_base="https://api.openai.com",
response_cost="0.1",
additional_headers=None,
),
)
6 changes: 5 additions & 1 deletion tests/router_unit_tests/test_router_helper_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,8 @@
import pytest
import litellm
from unittest.mock import patch, MagicMock, AsyncMock
from create_mock_standard_logging_payload import create_standard_logging_payload
from litellm.types.utils import StandardLoggingPayload


@pytest.fixture
Expand Down Expand Up @@ -366,14 +368,16 @@ async def test_deployment_callback_on_success(model_list, sync_mode):
import time

router = Router(model_list=model_list)

standard_logging_payload = create_standard_logging_payload()
standard_logging_payload["total_tokens"] = 100
kwargs = {
"litellm_params": {
"metadata": {
"model_group": "gpt-3.5-turbo",
},
"model_info": {"id": 100},
},
"standard_logging_object": standard_logging_payload,
}
response = litellm.ModelResponse(
model="gpt-3.5-turbo",
Expand Down

0 comments on commit beef643

Please sign in to comment.